A new analytical model has been developed in order to investigate the potential benefits of using fiber-reinforced composites in pressure vessels that undergo rigid-body motions. The model consists of a quasi-static lamination analysis of a cylindrical, filament-wound, pressure vessel, combined with an elastodynamic analysis that accounts for the coupling effects between its rigid-body motion and its elastic deformations. The particular type of motion investigated in this paper is that of an oil-pressurized, tubular connecting rod in a slider-crank mechanism of an internal combustion engine. A comprehensive parametric study has been focused on the maximum wall stresses induced in such a rod by the combined effect of internal pressure and inertia loads associated with its motion. The numerical results illustrate potential ways to reduce these stresses by appropriate selection of material systems, lay-up configurations and geometric parameters.

This content is only available via PDF.
You do not currently have access to this content.