Engineering personnel in industries which use pressurized containment vessels having attached nozzles are required not only to design portions of the lifting mechanism, but also to estimate the fluid volume which the vessel and nozzles will contain; most designers use simplified formulas for computing the quantities of interest. Typically, these formulas are valid approximations when the nozzle diameter is much smaller than the vessel diameter. The enclosed work develops three single-integral expressions which can be programmed and numerically integrated to obtain accurate estimates for both the material volume and also the containment volume present in a pair of eccentrically, or concentrically, intersecting thin-walled cylinders of arbitrary diameters. A table of such values is presented for a wide range of values of the standard nozzle pipe diameter and vessel diameter, for the special case of a concentric nozzle. In addition, an example is presented which compares the numerically integrated values for both the material volume and the containment volume to simplified upper and lower-bound estimates.

This content is only available via PDF.
You do not currently have access to this content.