Abstract
One of the current topics in the seismic design of piping systems is the overall reliability of them in earthquake events. Actual piping systems are generally supported by independent structures such as vessels and steel structures. So, it is very important to clarify the behavior of actual piping systems during the seismic events. For this purpose, the analytical method of multiple excitation problems is a preferable approach to not only evaluate the actual behavior of the piping systems, but also improve the reliability of piping systems. To clarify the dynamic characteristics of the piping systems and to assess the computational methods in the linear system subjected to multiple support excitations, an experimental study using a realistic large-scale piping model has been conducted. The equations for the multiple excitation problem have been validated and the adequacy of the multiple response spectra method has been confirmed by the comparison of the test results with the analytical one. This paper reports the results focusing on the analytical methods of the multiple support piping system. It is noted that the multiple response spectrum method is efficient for the multiple excitation problems.