In this paper, the dynamic response of delamination cracks in a layered fiber-reinforced composite plate is analytically studied. The plate is subjected to an antiplane loading and its surface response is computed in absence as well as in presence of delaminatioin cracks. To what extent the surface response is influenced by the presence of internal delamination cracks is investigated here. This study is important for nondestructive evaluation of internal damage in composites due to delamination. The problem is formulated in terms of integral equations in frequency domain. These equations are then solved by expanding the unknown crack opening displacement in a complete set of Chebychev’s polynomials, whose coefficients are solved by satisfying the traction-free condition at the crack surface. The time histories are obtained numerically by inverting the spectra via Fast Fourier Transform (FFT) routine. The results show significant influence of delamination crack geometries on the surface response of the plate.

This content is only available via PDF.
You do not currently have access to this content.