For much of the high-energy piping in light water reactor systems, fracture mechanics calculations can be used to assure pipe failure resistance, thus allowing the elimination of excessive rupture restraint hardware both inside and outside containment. These calculations use the concept of leak-before-break (LBB) and include part-through-wall flaw fatigue crack propagation, through-wall flaw detectable leakage, and through-wall flaw stability analyses. Performing these analyses not only reduces initial construction, future maintenance, and radiation exposure costs, but also improves the overall safety and integrity of the plant since much more is known about the piping and its capabilities than would be the case had the analyses not been performed. This paper presents the LBB methodology applied at Beaver Valley Power Station—Unit 2 (BVPS-2); the application for two specific lines, one inside containment (stainless steel) and the other outside containment (ferritic steel), is shown in a generic sense using a simple parametric matrix. The overall results for BVPS-2 indicate that pipe rupture hardware is not necessary for stainless steel lines inside containment greater than or equal to 6-in. (152-mm) nominal pipe size that have passed a screening criteria designed to eliminate potential problem systems (such as the feedwater system). Similarly, some ferritic steel line as small as 3-in. (76-mm) diameter (outside containment) can qualify for pipe rupture hardware elimination.

This content is only available via PDF.
You do not currently have access to this content.