The paper discusses the relationship between material properties and structural ratcheting for thin cylindrical shells subjected to severe thermal loading. The need to understand this problem arises in the design of Sodium Cooled Fast Reactors. A sequence of shakedown solutions are presented using a finite element technique [13]. It is shown that for tubes subject to moving temperature fields, ratcheting can occur even when no mechanical loads are applied and the material strongly cyclically hardens. Only small movements are required. Stationary thermal cycling is less likely to produce ratcheting. The calculations are compared with two sets of experimental data, which serve to confirm these conclusions.

This content is only available via PDF.
You do not currently have access to this content.