This paper presents a static, modal solution of Flugge’s thin shell equations for the cases of a ring or a long cylinder in a state of plane strain. The solution derived here enables the design analyst to compute the deflection resulting from concentrated loads applied in the plane of the cross section at an arbitrary angle to the circumference of the shell and to eliminate the error which results, in certain cases, from employing a previously derived inextensional analysis. A general solution is given for the case of any number of concentrated radial, tangential, and moment loads. The method of analysis for loadings that are a continuous function of the angular variable is also illustrated via a specific example. Numerical results compare solutions obtained with the present theory with those computed by invoking the assumption of inextensional deformation.

This content is only available via PDF.
You do not currently have access to this content.