In this paper, representation of the effects of incompressible fluid on the dynamic response of parallel beams in fluid-filled containers is developed using the concept of hydrodynamic mass. Using a two-step process, first the hydrodynamic mass matrix per unit (beam) length is derived using finite element methods with a thermal analogy. Second, this mass matrix is distributed in a consistent mass fashion along the beam lengths in a manner that accommodates three-dimensional beam bending plus torsion. The technique is illustrated by application to analysis of an experiment involving vibration of an array of four tubes in a fluid-filled cylinder.

This content is only available via PDF.
You do not currently have access to this content.