Recent studies of the mechanics of elastic-plastic and fully plastic crack growth suggest that such parameters as the J-integral and the crack tip opening displacement can, under certain conditions, be used to correlate the initiation and early increments of the ductile tearing mode of crack growth. To date, elastic-plastic fracture mechanics has been applied mainly to test specimen geometries, but there is a clear need for developing practical analysis capabilities in structures. In principle, three-dimensional elastic-plastic finite element analysis could be performed, but, in fact, such analyses would be prohibitively expensive for routine application. In the present work, the line-spring model of Rice and Levy [1-3] is extended to estimate the J-integral and crack tip opening displacement for some surface crack geometries in plates and shells. Good agreement with related solutions is obtained while using orders of magnitude less computing time.

This content is only available via PDF.
You do not currently have access to this content.