Design of connections of pipes and pressure vessels on the basis of a calculated maximum elastic stress often proves to be too conservative in the case of ductile materials. Elastic-plastic analysis by the finite element method proves to be too costly. This paper presents an alternative method which reduces the calculations to those of a rotationally symmetric shell subjected to axisymmetric loading. Using this approach approximate elastic-plastic deformations on the meridian passing through the crotch of a tee branch connection of cylindrical shells of equal diameter and thickness are determined. The method is limited to cases of the normal intersection of very thin shells of identical diameter, thickness, and material and to internal pressure loading. Numerical results for the intersection of two shells of R/t equal to 100 are given for an elastic-perfectly plastic material satisfying the von Mises yield condition.

This content is only available via PDF.
You do not currently have access to this content.