Skip Nav Destination
Proceedings Papers
ASME 2018 1st International Offshore Wind Technical Conference
Scientific Track
Floating Concepts
Mobile Offshore Platforms for Power Generation: The Energy Ship
OMAE 2018; V001T01A001https://doi.org/10.1115/IOWTC2018-1022
Topics:
Energy generation
,
Offshore platforms
,
Ships
,
Wind
,
Batteries
,
Boats
,
Design
,
Floating wind turbines
,
Hydraulic turbines
,
Hydrofoil
Wind Propulsion Options for Energy Ships
OMAE 2018; V001T01A002https://doi.org/10.1115/IOWTC2018-1056
Topics:
Propulsion
,
Ships
,
Wind
,
Hydraulic turbines
,
Fuels
,
Wind energy
,
Airfoils
,
Cycles
,
Energy storage
,
Hull
Parametric Study of a Counter Weight Suspension System for the TetraSpar Floating Wind Turbine
OMAE 2018; V001T01A003https://doi.org/10.1115/IOWTC2018-1079
Topics:
Floating wind turbines
,
Suspension systems
,
Weight (Mass)
,
Design
,
Chain
,
Stress
,
Center of mass
,
Mass production
,
Modeling
,
Stiffness
Load Mitigation on Floating Offshore Wind Turbines With Advanced Controls and Tuned Mass Dampers
John Cross-Whiter, Benjamin B. Ackers, Dhiraj Arora, Alan Wright, Paul Fleming, Matthew Lackner, Semyung Park
OMAE 2018; V001T01A004https://doi.org/10.1115/IOWTC2018-1096
Topics:
Dampers
,
Offshore wind turbines
,
Stress
,
Water
,
Fatigue damage
,
Engineering simulation
,
Simulation
,
Turbines
,
Control equipment
,
Flanges
Metocean
Analysis of Wind Speed Shear and Turbulence LiDAR Measurements to Support Offshore Wind in the Northeast United States
OMAE 2018; V001T01A005https://doi.org/10.1115/IOWTC2018-1003
Topics:
Ocean engineering
,
Shear (Mechanics)
,
Turbulence
,
Wind
,
Wind velocity
,
Buoys
,
Design
,
American Petroleum Institute
,
Engineering standards
,
Seas
MetOcean-on-Demand for the US East Coast: Wave and Hydrodynamics Database
OMAE 2018; V001T01A007https://doi.org/10.1115/IOWTC2018-1038
Topics:
Databases
,
Hydrodynamics
,
Shorelines
,
Waves
,
Resolution (Optics)
,
Ocean engineering
,
Wind
,
Wind farms
,
Atmospheric pressure
,
Calibration
A New Assessment of Offshore Wind Profile Relationships
OMAE 2018; V001T01A008https://doi.org/10.1115/IOWTC2018-1052
Topics:
Ocean engineering
,
Wind
,
Uncertainty
,
Wind energy
,
Engineering design
,
Satellites
,
Turbulence
,
Water
,
Computer simulation
,
Elevations (Drawings)
Validation of a Simplified LiDAR-Buoy Model Using Open Sea Measurements
OMAE 2018; V001T01A009https://doi.org/10.1115/IOWTC2018-1086
Topics:
Buoys
,
Seas
,
Computer simulation
,
Ocean engineering
,
Petroleum industry
,
Uncertainty
,
Waves
,
Wind
,
Rotation
Model Testing
A Study on Structural Responses of Offshore Wind Turbines by Slamming Loads
Byoungcheon Seo, Hyunkyoung Shin, Junbae Kim, Woorim Shim, Hyeonjeong Ahn, Youngjae Yu, Pham Thanh Dam, Rupesh Kumar
OMAE 2018; V001T01A010https://doi.org/10.1115/IOWTC2018-1043
Topics:
Offshore wind turbines
,
Stress
,
Structural response analysis
,
Design
,
Damage
,
Seas
,
Offshore structures
,
Pressure
,
Structural design
,
Construction
Experimental and Numerical Comparison of the Wave Dynamics and Guy Wire Forces of a Very Light FOWT Considering Hydroelastic Behavior
Jiang Xiong, Lucas H. S. do Carmo, Daniel P. Vieira, Pedro C. de Mello, Edgard B. Malta, Alexandre N. Simos, Hideyuki Suzuki, Rodolfo T. Gonçalves
OMAE 2018; V001T01A011https://doi.org/10.1115/IOWTC2018-1057
Topics:
Dynamics (Mechanics)
,
Guy wires
,
Waves
,
Computer software
,
Cables
,
Computer simulation
,
Fluid-dynamic forces
,
Mooring
,
Offshore wind turbines
,
Physics
Comparison of Two Wind Turbine Loading Emulation Techniques Based on Tests of a TLP-FOWT in Combined Wind, Waves and Current
OMAE 2018; V001T01A012https://doi.org/10.1115/IOWTC2018-1068
Topics:
Tension-leg platforms
,
Wind turbines
,
Wind waves
,
Stress
,
Wind
,
Waves
,
Blades
,
Computer software
,
Drag (Fluid dynamics)
,
Inertia (Mechanics)
Real-Time Hybrid Model Testing of a Semi-Submersible 10MW Floating Wind Turbine and Advances in the Test Method
OMAE 2018; V001T01A013https://doi.org/10.1115/IOWTC2018-1081
Topics:
Floating wind turbines
,
Semi-submersible offshore structures
,
Testing
,
Oceans
,
Stress
,
Waves
,
Cables
,
Robots
,
Rotors
,
Wind
Design and Validation of a Multi-Scale Model Floating Offshore Test Wind Turbine
OMAE 2018; V001T01A014https://doi.org/10.1115/IOWTC2018-1084
Topics:
Design
,
Ocean engineering
,
Wind turbines
,
Blades
,
Turbines
,
Aerodynamics
,
Composite materials
,
Computer simulation
,
Control algorithms
,
Fluid-dynamic forces
Mooring and Foundation Design
Comparing Frequency and Time Domain Simulations for Geometry Optimization of a Floating Offshore Wind Turbine Mooring System
OMAE 2018; V001T01A016https://doi.org/10.1115/IOWTC2018-1006
Topics:
Engineering simulation
,
Geometry
,
Mooring
,
Offshore wind turbines
,
Optimization
,
Simulation
,
Design
,
Fatigue
,
Fatigue damage
,
Ocean engineering
Dynamic Load Reduction and Station Keeping Mooring System for Floating Offshore Wind
Magnus J. Harrold, Philipp R. Thies, Lars Johanning, David Newsam, Michael Checkley, Claudio Bittencourt Ferreira
OMAE 2018; V001T01A018https://doi.org/10.1115/IOWTC2018-1012
Topics:
Mooring
,
Ocean engineering
,
Stress
,
Wind
,
Peak load
,
Buoys
,
Design
,
Dynamics (Mechanics)
,
Engineering simulation
,
Fatigue
Integrity Management Challenges for Commercial-Scale Floating Wind Farms
OMAE 2018; V001T01A019https://doi.org/10.1115/IOWTC2018-1017
Topics:
Wind farms
,
Design
,
Ocean engineering
,
Robustness
,
Manufacturing
,
Mooring
,
Corrosion
,
Fatigue
,
Inspection
,
Insurance
DNV GL Standard for Floating Wind Turbines
OMAE 2018; V001T01A020https://doi.org/10.1115/IOWTC2018-1035
Topics:
Floating wind turbines
,
Design
,
Wind turbines
,
Ocean engineering
,
Fatigue
,
Floating structures
,
Shorelines
,
Cables
,
Condensation
,
Corrosion
Snap Load Criteria for Mooring Lines of a Floating Offshore Wind Turbine
OMAE 2018; V001T01A022https://doi.org/10.1115/IOWTC2018-1047
Topics:
Mooring
,
Offshore wind turbines
,
Stress
,
Tension
,
Computer simulation
,
Computer software
,
Storms
,
Water
,
Composite materials
,
Design
A Safety Concept for Penetration Analysis of Suction Caissons and Anchors in Clay and Layered Soils
OMAE 2018; V001T01A023https://doi.org/10.1115/IOWTC2018-1076
Topics:
Caissons
,
Safety
,
Soil
,
Suction
,
Design
,
Probability
,
Stress
,
Bearings
,
Boundary-value problems
,
Failure
Effects of Co-Located Floating Wind-Wave Systems on Fatigue Damage of Floating Offshore Wind Turbine Mooring Cables
OMAE 2018; V001T01A024https://doi.org/10.1115/IOWTC2018-1077
Topics:
Cables
,
Fatigue damage
,
Mooring
,
Offshore wind turbines
,
Wind waves
,
Fatigue
,
Spectra (Spectroscopy)
,
Waves
,
Design
,
Fatigue analysis
Numerical Modeling
Further Discussion on the White-Noise Approach for Predicting Slow-Drifts in FAST
OMAE 2018; V001T01A026https://doi.org/10.1115/IOWTC2018-1014
Topics:
White noise
,
Approximation
,
Computation
,
Engineering simulation
,
Simulation
,
Waves
,
Computer software
,
Couplings
,
Design
,
Dynamics (Mechanics)
Evaluating the Coupledness of the Aerodynamics and Hydrodynamics on the Estimation of Fatigue Damage Equivalent Load for a Floating Offshore Wind Platform
OMAE 2018; V001T01A029https://doi.org/10.1115/IOWTC2018-1045
Topics:
Aerodynamics
,
Fatigue damage
,
Hydrodynamics
,
Ocean engineering
,
Stress
,
Wind
,
Engineering simulation
,
Simulation
,
Damage
,
Waves
A Coupled Wind-Wave-Turbine Solver for Offshore Wind Farm
OMAE 2018; V001T01A030https://doi.org/10.1115/IOWTC2018-1046
Topics:
Ocean engineering
,
Turbines
,
Waves
,
Wind
,
Wind farms
,
Blades
,
Wakes
,
Actuators
,
Composite materials
,
Engineering simulation
Compressible Navier-Stokes Analysis of Floating Wind Turbine Rotor Aerodynamics
M. Sergio Campobasso, Andrea G. Sanvito, Jernej Drofelnik, Adrian Jackson, Yang Zhou, Qing Xiao, Alessandro Croce
OMAE 2018; V001T01A031https://doi.org/10.1115/IOWTC2018-1059
Topics:
Aerodynamics
,
Floating wind turbines
,
Rotors
,
Compressible flow
,
Computational fluid dynamics
,
Turbines
,
Blades
,
Compressibility
,
Design
,
Flow (Dynamics)
Coupled Analysis and Numerical Model Verification for the 2MW Floatgen Demonstrator Project With IDEOL Platform
OMAE 2018; V001T01A032https://doi.org/10.1115/IOWTC2018-1071
Topics:
Computer simulation
,
Wind
,
Design
,
Turbines
,
Drag (Fluid dynamics)
,
Kinematics
,
Modeling
,
Mooring
,
Boundary element methods
,
Computer software
Nonlinear Wave Load Models for Extra Large Monopiles
Csaba Pákozdi, Silas Spence, Sebastien Fouques, Maxime Thys, Hagbart S. Alsos, Erin E. Bachynski, Hans Bihs, Arun Kamath
OMAE 2018; V001T01A033https://doi.org/10.1115/IOWTC2018-1083
Topics:
Nonlinear waves
,
Stress
,
Waves
,
Kinematics
,
Computational fluid dynamics
,
Design
,
Engineering simulation
,
Modeling
,
Morison equation
,
Ocean engineering
Simulation of a Floating Offshore Wind Turbine With an Integrated Response Mitigation Technology
OMAE 2018; V001T01A034https://doi.org/10.1115/IOWTC2018-1087
Topics:
Computer simulation
,
Computer software
,
Dampers
,
Damping
,
Fluids
,
Hull
,
NASA
,
Offshore wind turbines
,
Semi-submersible offshore structures
,
Simulation
Offshore Farms
Fatigue Load Reductions in Offshore Wind Turbine Monopile Foundations in Co-Located Wind-Wave Arrays
OMAE 2018; V001T01A037https://doi.org/10.1115/IOWTC2018-1024
Topics:
Fatigue
,
Offshore wind turbines
,
Stress
,
Wind waves
,
Waves
,
Climate
,
Fatigue analysis
,
Fatigue damage
,
Fatigue limit
,
Ocean engineering
Operational Data to Maintenance Optimization: Closing the Loop in Offshore Wind O&M
OMAE 2018; V001T01A038https://doi.org/10.1115/IOWTC2018-1058
Topics:
Maintenance
,
Ocean engineering
,
Optimization
,
Wind
,
Algorithms
,
Wind farms
,
Machine learning
,
Support vector machines
,
Condition monitoring
,
Data acquisition
Fatigue Life Analysis of Offshore Wind Turbine Support Structures in an Offshore Wind Farm
OMAE 2018; V001T01A039https://doi.org/10.1115/IOWTC2018-1061
Topics:
Fatigue life
,
Ocean engineering
,
Offshore wind turbines
,
Wind farms
,
Wind turbines
,
Disks
,
Fatigue
,
Rotors
,
Actuators
,
Engineering simulation
Structural Analysis
Effect of Foundation Modeling of a Jack-Up Crane Vessel on the Dynamic Motion Response of an Offshore Wind Turbine Blade During Installation
OMAE 2018; V001T01A040https://doi.org/10.1115/IOWTC2018-1010
Topics:
Blades
,
Crane barges
,
Jack-up drilling rigs
,
Modeling
,
Offshore wind turbines
,
Soil
,
Cranes
,
Vessels
,
Ocean engineering
,
Stress
Multi-Level Design of Tubular Joints
OMAE 2018; V001T01A041https://doi.org/10.1115/IOWTC2018-1015
Topics:
Design
,
Tubular joints
,
Interpolation
,
Stress
,
Databases
,
Finite element analysis
,
Finite element model
,
Geometry
,
Modeling
,
Ocean engineering
Fatigue Analysis at the Tower of a 12MW Floating Offshore Wind Turbine
OMAE 2018; V001T01A043https://doi.org/10.1115/IOWTC2018-1064
Topics:
Fatigue analysis
,
Offshore wind turbines
,
Design
,
Stress
,
Cycles
,
Fatigue
,
Fatigue life
,
Resonance
,
Wind turbines
,
Fatigue strength
Cyclic Soil Loads on an Offshore Wind Turbine During Storm
OMAE 2018; V001T01A045https://doi.org/10.1115/IOWTC2018-1075
Topics:
Offshore wind turbines
,
Soil
,
Storms
,
Stress
,
Waves
,
Wind
,
Wind turbines
,
Design
,
Linear wave theory
,
Nonlinear waves
Project Development Track
Design and Operational Challenges
Hydrodynamic Simulations to Increase the Workability for Offshore Wind Maintenance Operations
OMAE 2018; V001T02A002https://doi.org/10.1115/IOWTC2018-1069
Topics:
Engineering simulation
,
Maintenance
,
Ocean engineering
,
Simulation
,
Wind
,
Workability
,
Vessels
,
Energy dissipation
,
Waves
,
Wind farms
World Wide Projects
An Analysis of Alternatives for the Development of Jones Act Compliant Windfarm Construction Vessel Fleets
OMAE 2018; V001T02A003https://doi.org/10.1115/IOWTC2018-1021
Topics:
Construction
,
Vessels
,
Wind farms
,
Ocean engineering
,
Turbines
,
Shorelines
,
Water
,
Electricity (Physics)
,
Gates (Closures)
,
Generators
Creating an Offshore Floating Wind Energy Industry in California
OMAE 2018; V001T02A004https://doi.org/10.1115/IOWTC2018-1026
Topics:
Ocean engineering
,
Wind energy
,
Shorelines
,
Wind
,
Leadership
Email alerts
Most Read Proceedings Papers in OMAE
OMAE2024 Front Matter
OMAE2024