Abstract

This paper presents a motion planning, guidance, and control system for an autonomous surface vessel in a practical maritime environment. The motion planning algorithm is based on the angle-guidance fast-marching square method (AFMS), and the guidance system is based on the line-of-sight (LOS) trajectory tracking algorithm. To validate the motion planning algorithm, numerical simulations were carried out to compute the optimal path in a static environment including various obstacles. The guidance and control system were tested with an autonomous surface vehicle (ASV) tracking a pre-established trajectory including static obstacles. The autonomous surface vehicle is a self-propelled scaled ship model of 2.5 m equipped with sensors and actuators, inertial measurement unit (IMU), global positioning system (GPS), propulsion direct current (DC) motors, and wireless communication. From the experiments and numerical simulations, a good agreement was found.

References

1.
IMO
,
2019
,
Guidelines for Maritime Autonomous Surface Ships (MASS)
, International Maritime Organization, London, UK, online report, http://www.imo.org/en/MediaCentre/HotTopics/Pages/Autonomous-shipping.aspx
2.
Caccia
,
M.
,
2006
, “
Autonomous Surface Crafts: Prototypes and Basic Research Issues
,”
Proceedings of 14th Mediterranean Conference on Control and Automation
,
Ancona, Italy
,
June 28–30
, pp.
1
6
.
3.
Hao
,
Y.
, and
Agrawal
,
S. K.
,
2005
, “
Planning and Control of UGV Formations in a Dynamic Environment: A Practical Framework With Experiments
,”
Robot. Auton. Syst.
,
51
(
2–3
), pp.
101
110
. 10.1016/j.robot.2005.01.001
4.
Garrido
,
S.
,
Moreno
,
L.
, and
Lima
,
P. U.
,
2011
, “
Robot Formation Motion Planning Using Fast Marching
,”
Robot. Auton. Syst.
,
59
(
9
), pp.
675
683
. 10.1016/j.robot.2011.05.011
5.
Gómez
,
J. V.
,
Lumbier
,
A.
,
Garrido
,
S.
, and
Moreno
,
L.
,
2013
, “
Planning Robot Formations With Fast Marching Square Including Uncertainty Conditions
,”
Robot. Auton. Syst.
,
61
(
2
), pp.
137
152
. 10.1016/j.robot.2012.10.009
6.
Liu
,
Y.
, and
Bucknall
,
R.
,
2015
, “
Path Planning Algorithm for Unmanned Surface Vehicle Formations in a Practical Maritime Environment
,”
Ocean Eng.
,
97
, pp.
126
144
. 10.1016/j.oceaneng.2015.01.008
7.
Liu
,
Y.
, and
Bucknall
,
R.
,
2016
, “
The Angle Guidance Path Planning Algorithms for Unmanned Surface Vehicle Formations by Using the Fast Marching Method
,”
Appl. Ocean Res.
,
59
, pp.
327
344
. 10.1016/j.apor.2016.06.013
8.
Breivik
,
M.
, and
Fossen
,
T. I.
,
2004
, “
Path Following of Straight Lines and Circles for Marine Surface Vessels
,”
Proceedings of the Sixth IFAC CAMS
,
Ancona, Italy
,
July 7–9
, pp.
65
70
.
9.
Fossen
,
T. I.
,
Breivik
,
M.
, and
Skjetne
,
R.
,
2003
, “
Line-of-Sight Path Following of Underactuated Marine Craft
,”
Proceedings of the Sixth IFAC Conference on Maneuvering and Control of Marine Crafts (MCMC’2003)
,
Girona, Spain
,
Sept. 17–19
, pp.
244
249
.
10.
Xu
,
H.
, and
Guedes Soares
,
C.
,
2016
, “
Vector Field Path Following for Surface Marine Vessel and Parameter Identification Based on LS-SVM
,”
Ocean Eng.
,
113
, pp.
151
161
. 10.1016/j.oceaneng.2015.12.037
11.
Moreira
,
L.
,
Fossen
,
T. I.
, and
Guedes Soares
,
C.
,
2007
, “
Path Following Control System for a Tanker Ship Model
,”
Ocean Eng.
,
34
(
14–15
), pp.
2074
2085
. 10.1016/j.oceaneng.2007.02.005
12.
Perera
,
L. P.
,
Ferrari
,
V.
,
Santos
,
F. P.
,
Hinostroza
,
M. A.
, and
Guedes Soares
,
C.
,
2015
, “
Experimental Evaluations on Ship Autonomous Navigation and Collision Avoidance by Intelligent Guidance
,”
IEEE J. Oceanic Eng.
,
40
(
2
), pp.
374
387
. 10.1109/JOE.2014.2304793
13.
Sethian
,
J. A.
,
1996
, “
A Fast Marching Level set Method for Monotonically Advancing Fronts
,”
Proc. Natl. Acad. Sci. U. S. A.
,
93
(
4
), pp.
1591
1595
. 10.1073/pnas.93.4.1591
14.
Dijkstra
,
E. W.
,
1959
, “
A Note on Two Problems in Connexion With Graphs
,”
Numerische Mathematik
,
1
(
1
), pp.
269
271
. 10.1007/BF01386390
15.
Fossen
,
T. I.
,
2011
,
Handbook of Marine Craft Hydrodynamics and Motion Control
,
John Wiley & Sons Ltd.
,
New York
.
16.
Ferrari
,
V.
,
Perera
,
L. P.
,
Santos
,
F. P.
,
Hinostroza
,
M. A.
,
Sutulo
,
S.
, and
Guedes Soares
,
C.
,
2015
, “Initial Experimental Tests of a Research-Oriented Self-Running Ship Model,”
Maritime Technology and Engineering
,
C.
Guedes Soares
, and
T. A.
Santos
, eds.,
Taylor & Francis Group
,
London, UK
, pp.
913
918
.
17.
Xu
,
H.
,
Hinostroza
,
M. A.
, and
Guedes Soares
,
C.
,
2018
, “
Identification of Hydrodynamic Coefficients of Ship Nonlinear Manoeuvring Mathematical Model With Free Running Model Tests
,”
Intl. J. Maritime Eng.
,
160
(
A3
), pp.
213
225
. 10.3940/rina.ijme.a3.2018.448
18.
Hinostroza
,
M. A.
,
Xu
,
H.
, and
Guedes Soares
,
C.
,
2019
, “
Cooperative Operation of Autonomous Surface Vehicles for Maintaining Formation in Complex Marine Environment
,”
Ocean Eng.
,
183
, pp.
132
154
. 10.1016/j.oceaneng.2019.04.098
19.
Borhaug
,
E.
,
Pavlov
,
A.
, and
Pettersen
,
K. Y.
,
2008
, “
Integral LOS Control for Path Following of Underactuated Marine Surface Vessels in the Presence of Constant Ocean Currents
,”
47th IEEE Conference on Decision and Control
,
Cancun, Mexico
,
Dec. 9–11
, pp.
4984
4991
.
You do not currently have access to this content.