Abstract

The 14 partial differential equation system describing the longitudinal–flexural–torsional dynamic behavior of liquid-filled pipelines contains coupled equations due to mutual boundary conditions and Poisson contraction ratio terms. Solutions of the above system are available in the frequency-domain or in the time-domain (method of characteristics (MOC)). In this paper, an analytic solution in the domain of time and space is achieved. Double integral transform, namely, finite sine Fourier transform (FSFT) and Laplace transform, is applied to the derived system of the 14 fourth-order partial differential equations, yielding an algebraic system in terms of the transformed variables. The inversion of the FSFT is an easy task, but the analytic inversion of the Laplace transforms is very challenging. Both integral transform inversions of the 14 transformed variables are successfully performed, and an analytic matrix formula in the domain of time and space along with numerical results is obtained.

References

References
1.
Wiggert
,
D. C.
,
1986
, “
Coupled Transient Flow and Structural Motion in Liquid-Filled Piping Systems: A Survey
,”
Proceedings of the ASME Pressure Vessels and Piping Conference
,
Chicago
, Paper 86-PVP-4.
2.
Lavooij
,
C. S. W.
, and
Tijsseling
,
A. S.
,
1991
, “
Fluid-Structure Interaction in Liquid-Filled Piping Systems
,”
J. Fluids Struct.
,
5
(
5
), pp.
573
595
. 10.1016/S0889-9746(05)80006-4
3.
Tijsseling
,
A. S.
,
1996
, “
Fluid-Structure Interaction in Liquid-Filled Pipe Systems: A Review
,”
J. Fluids Struct.
,
10
(
2
), pp.
109
146
. 10.1006/jfls.1996.0009
4.
Wiggert
,
D. C.
, and
Tijsseling
,
A. S.
,
2001
, “
Fluid Transients and Fluid-Structure Interaction in Flexible Liquid-Filled Piping
,”
ASME Appl. Mech. Rev.
,
54
(
5
), pp.
455
481
. 10.1115/1.1404122
5.
Zhang
,
L.
,
Tijsseling
,
A. S.
, and
Vardy
,
A. E.
,
1999
, “
FSI Analysis of Liquid-Filled Pipes
,”
J. Sound Vib.
,
224
(
1
), pp.
69
99
. 10.1006/jsvi.1999.2158
6.
Tijsseling
,
A. S.
,
2003
, “
Exact Solution of Linear Hyperbolic Four-Equation System in Axial Liquid-Pipe Vibration
,”
J. Fluids Struct.
,
18
(
2
), pp.
179
196
. 10.1016/j.jfluidstructs.2003.07.001
7.
Shuaijun
,
L.
,
Karney
,
B. W.
, and
Liu
,
G.
,
2015
, “
FSI Research in Pipeline Systems—A Review of the Literature
,”
J. Fluids Struct.
,
57
, pp.
277
297
. 10.1016/j.jfluidstructs.2015.06.020
8.
Dai
,
H. L.
,
Wang
,
L.
,
Qian
,
Q.
, and
Gan
,
J.
,
2012
, “
Vibration Analysis of Three-Dimensional Pipes Conveying Fluid With Consideration of Steady Combined Force by Transfer Matrix Method
,”
Appl. Math. Comput.
,
219
(
5
), pp.
2453
2464
. 10.1016/j.amc.2012.08.081
9.
Shuai-jun
,
L.
,
Gong-min
,
L.
, and
Wei-tao
,
K.
,
2014
, “
Vibration Analysis of Pipes Conveying Fluid by Transfer Matrix Method
,”
Nucl. Eng. Des.
,
266
, pp.
78
88
. 10.1016/j.nucengdes.2013.10.028
10.
Pavlou
,
D. G.
, and
Ong
,
M. C.
,
2017
, “
Damping Effect on the Wave Propagation in Carbon Steel Pipelines Under Fluid Hammer Conditions
,”
ASME J. Offshore Mech. Arct. Eng.
,
139
(
4
), p.
041702
. 10.1115/1.4036374
11.
HoYou
,
J.
, and
Inaba
,
K.
,
2013
, “
Fluid-Structure Interaction in Water-Filled Pipes of Anisotropic Composite Materials
,”
J. Fluids Struct.
,
36
, pp.
162
173
. 10.1016/j.jfluidstructs.2012.08.010
12.
Cesana
,
P.
, and
Bitter
,
N.
,
2014
, “
Modelling and Analysis of Water-Hammer in Coaxial Pipes
,”
J. Fluids Struct.
,
51
, pp.
225
239
. 10.1016/j.jfluidstructs.2014.08.011
13.
Pavlou
,
D. G.
,
2015
, “
Undamped Vibration of Laminated Fiber-Reinforced Polymer Pipes in Water Hammer Conditions
,”
ASME J. Offshore Mech. Arct. Eng.
,
137
(
6
), p.
061701
. 10.1115/1.4031669
14.
Pavlou
,
D. G.
,
2016
, “
Dynamic Response of a Multi-Layered FRP Cylindrical Shell Under Unsteady Loading Conditions
,”
Eng. Struct.
,
112
, pp.
256
264
. 10.1016/j.engstruct.2016.01.023
15.
Liu
,
G.
, and
Li
,
Y.
,
2011
, “
Vibration Analysis of Liquid-Filled Pipelines With Elastic Constraints
,”
J. Sound Vib.
,
330
, pp.
3166
3181
. 10.1016/j.jsv.2011.01.022
16.
Tentarelli
,
S. C.
,
1989
, “
Propagation of Noise and Vibration in Complex Hydraulic Tubing Systems
,” Ph.D. thesis,
Lehigh University
.
17.
Sneddon
,
I. H.
,
1972
,
The Use of Integral Transforms
,
McGraw-Hill
,
New York
.
18.
Frýba
,
L.
,
1999
,
Vibration of Solids and Structures Under Moving Loads
,
Thomas Telford
,
London
.
19.
Prudnikov
,
A. P.
,
Brychkov
,
Yu. A.
, and
Marichev
,
O. I.
,
2002
,
Integrals and Series: Vol. 5 Inverse Laplace Transforms
,
Taylor & Francis
,
London
.
20.
Bateman
,
H.
,
1954
,
Tables of Integral Transforms, Vol. 1
,
McGraw-Hill
,
New York
.
You do not currently have access to this content.