Abstract

Floating offshore wind turbines (FOWTs) are prone to failure due to harsh marine environments, and preventive maintenance (PM) is necessary to ensure that the system operates efficiently. This study aims to establish a PM strategy for the electric control system in the FOWT. The system degradation is modeled as a stochastic process following the Gamma distribution. The costs for implementing PM or corrective maintenance (CM) within the lifetime of the FOWT represent the economic performance of the maintenance strategy. In addition to the maintenance threshold, another key factor, the inspection time interval, is considered in the model to further improve the scheduling of maintenance actions. An improved salp swarm algorithm (ISSA) is adopted to determine the optimal maintenance strategy. The maintenance cost under nonperiodic inspection and maintenance is minimized to enhance the economic performance of the maintenance strategy. A case study is performed to demonstrate the superiority of the developed maintenance strategy. The results show that the optimal maintenance strategy results in an average daily saving of 60.1€ in the FOWT generator over a 25-year lifetime. Through numerical analysis of maintenance optimization, this study provides insights into enhancing the cost-effectiveness of the maintenance for FOWTs.

References

1.
McKenna
,
R.
,
D’Andrea
,
M.
, and
González
,
M. G.
,
2021
, “
Analysing Long-Term Opportunities for Offshore Energy System Integration in the Danish North Sea
,”
Adv. Appl. Energy
,
4
, p.
100067
.
2.
Ortega
,
C.
,
Younes
,
A.
,
Severy
,
M.
,
Chamberlin
,
C.
, and
Jacobson
,
A.
,
2020
, “
Resource and Load Compatibility Assessment of Wind Energy Offshore of Humboldt County, California
,”
Energies
,
13
(
21
), p.
5707
.
3.
deCastro
,
M.
,
Salvador
,
S.
,
Gomez-Gesteira
,
M.
,
Costoya
,
X.
,
Carvalho
,
D.
,
Sanz-Larruga
,
F.
, and
Gimeno
,
L.
,
2019
, “
Europe, China and the United States: Three Different Approaches to the Development of Offshore Wind Energy
,”
Renew. Sustain. Energy Rev.
,
109
, pp.
55
70
.
4.
Bonou
,
A.
,
Laurent
,
A.
, and
Olsen
,
S. L.
,
2016
, “
Life Cycle Assessment of Onshore and Offshore Wind Energy - From Theory to Application
,”
Appl. Energy
,
180
, pp.
327
337
.
5.
Chen
,
Y.
, and
Lin
,
H.
,
2022
, “
Overview of the Development of Offshore Wind Power Generation in China
,”
Sustainable Energy Technol. Assessm.
,
53
(
Part D
), p.
102766
.
6.
Li
,
H.
,
Huang
,
C.-G.
, and
Guedes Soares
,
C.
,
2022
, “
A Real-Time Inspection and Opportunistic Maintenance Strategies for Floating Offshore Wind Turbines
,”
Ocean Eng.
,
256
, p.
111433
.
7.
Ayurani
,
L.
, and
Indriawati
,
K.
,
2019
, “
Real-Time Reliability Prediction for Wind Turbines Speed Control Systems Based on Sensor Fault Prediction
,”
Adv. Ind. Technol. Eng. Phys.
,
2088
(
1
), p.
020019
.
8.
Weiss
,
C. V. C.
,
Guanche
,
R.
,
Ondiviela
,
B.
,
Castellanos
,
O. F.
, and
Juanes
,
J.
,
2018
, “
Marine Renewable Energy Potential: A Global Perspective for Offshore Wind and Wave Exploitation
,”
Energy Convers. Manage.
,
177
, pp.
43
54
.
9.
Li
,
M.
,
Jiang
,
X.
,
Carroll
,
J.
,
Negenborn
,
R. R.
,
Kalogirou
,
S. A.
, and
Christodoulides
,
P.
,
2024
, “
Operation and Maintenance Management for Offshore Wind Farms Integrating Inventory Control and Health Information
,”
Renewable Energy
,
231
, p.
120970
.
10.
Lu
,
Y.
,
Sun
,
L.
,
Kang
,
J.
,
Sun
,
H.
, and
Zhang
,
X.
,
2017
, “
Opportunistic Maintenance Optimization for Offshore Wind Turbine Electrical and Electronic System Based on Rolling Horizon Approach
,”
Renewable Sustainable Energy Rev.
,
9
(
3
), p.
033307
.
11.
Gao
,
Z.
, and
Liu
,
X.
,
2021
, “
An Overview on Fault Diagnosis, Prognosis and Resilient Control for Wind Turbine Systems
,”
Processes
,
9
(
2
), p.
300
.
12.
Turnbull
,
A.
,
McKinnon
,
C.
,
Carrol
,
J.
, and
McDonald
,
A.
,
2022
, “
On the Development of Offshore Wind Turbine Technology: An Assessment of Reliability Rates and Fault Detection Methods in a Changing Market
,”
Energies
,
15
(
9
), p.
3180
.
13.
Zhang
,
J.
,
Kang
,
J.
,
Sun
,
L.
, and
Bai
,
X.
,
2021
, “
Risk Assessment of Floating Offshore Wind Turbines Based on Fuzzy Fault Tree Analysis
,”
Ocean Eng.
,
239
, p.
109859
.
14.
Lu
,
Y.
,
Sun
,
L.
,
Zhang
,
X.
,
Feng
,
F.
,
Kang
,
J.
, and
Fu
,
G.
,
2018
, “
Condition Based Maintenance Optimization for Offshore Wind Turbine Considering Opportunities Based on Neural Network Approach
,”
Appl. Ocean Res.
,
74
, pp.
69
79
.
15.
Dao
,
C. D.
,
Kazemtabrizi
,
B.
,
Crabtree
,
C. J.
, and
Tavner
,
P. J.
,
2021
, “
Integrated Condition-Based Maintenance Modelling and Optimisation for Offshore Wind Turbines
,”
Wind Energy
,
24
(
11
), pp.
1180
1198
.
16.
Rausand
,
M.
,
1998
, “
Reliability Centered Maintenance
,”
Reliab. Eng. Syst. Saf.
,
60
(
2
), pp.
121
132
.
17.
Kang
,
J.
,
Lv
,
K.
,
Sun
,
Y.
, and
Li
,
M.
,
2025
, “
Predictive Risk Assessment Framework for Leakage Accident of Offshore LNG Transfer System
,”
Expert Syst. Appl.
,
271
, p.
126580
.
18.
Yu
,
P.
,
Fu
,
W.
,
Wang
,
L.
,
Zhou
,
Z.
,
Wang
,
G.
, and
Zhang
,
Z.
,
2021
, “
Reliability-Centered Maintenance for Modular Multilevel Converter in HVDC Transmission Application
,”
IEEE J. Emerg. Select. Top. Power Electron.
,
9
(
3
), pp.
3166
3176
.
19.
Zhao
,
H.
,
Xu
,
F.
,
Liang
,
B.
,
Zhang
,
J.
, and
Song
,
P.
,
2019
, “
A Condition-Based Opportunistic Maintenance Strategy for Multi-Component System
,”
Struct. Health Monit.
,
18
(
1
), pp.
270
283
.
20.
Yildirim
,
M.
,
Gebraeel
,
N. Z.
, and
Sun
,
X. A.
,
2017
, “
Integrated Predictive Analytics and Optimization for Opportunistic Maintenance and Operations in Wind Farms
,”
IEEE Trans. Power Syst.
,
32
(
6
), pp.
4319
4328
.
21.
Su
,
T.-S.
,
Weng
,
X.-Y.
,
Yu
,
V. F.
, and
Wu
,
C.-C.
,
2023
, “
Optimal Maintenance Planning for Offshore Wind Farms Under an Uncertain Environment
,”
Ocean Eng.
,
283
, p.
115033
.
22.
Zhao
,
C.
,
Liu
,
H.
,
Qu
,
X.
,
Liu
,
M.
,
Tang
,
R.
, and
Xie
,
A.
,
2023
, “
Reliability Analysis of a Floating Offshore Wind Turbine Generator System Based on Failure Prediction and Maintenance
,”
Ocean Eng.
,
288
, p.
116089
.
23.
Liu
,
H.
,
Zhao
,
C.
,
Ma
,
G.
,
He
,
L.
,
Sun
,
L.
, and
Li
,
H.
,
2022
, “
Reliability Assessment of a Floating Offshore Wind Turbine Mooring System Based on the TLBO Algorithm
,”
Appl. Ocean Res.
,
124
, p.
103211
.
24.
Badihi
,
H.
,
Zhang
,
Y.
,
Jiang
,
B.
,
Pillay
,
P.
, and
Rakheja
,
S.
,
2022
, “
A Comprehensive Review on Signal-Based and Model-Based Condition Monitoring of Wind Turbines: Fault Diagnosis and Lifetime Prognosis
,”
Proc. IEEE
,
110
(
6
), pp.
754
806
.
25.
López-Queija
,
J.
,
Robles
,
E.
,
Jugo
,
J.
, and
Alonso-Quesada
,
S.
,
2022
, “
Review of Control Technologies for Floating Offshore Wind Turbines
,”
Renewable Sustainable Energy Rev.
,
167
, p.
112787
.
26.
Li
,
M.
,
Jiang
,
X.
, and
Negenborn
,
R. R.
,
2021
, “
Opportunistic Maintenance for Offshore Wind Farms With Multiple-Component Age-Based Preventive Dispatch
,”
Ocean Eng.
,
231
, p.
109062
.
27.
Huynh
,
K. T.
,
Langeron
,
Y.
, and
Grall
,
A.
,
2017
, “
Degradation Modeling and RUL Estimation of Deteriorating Systems in S-Plane
,”
IFAC-PapersOnLine
,
50
(
1
), pp.
12249
12254
.
28.
Li
,
M.
,
Jiang
,
X.
,
Carroll
,
J.
, and
Negenborn
,
R. R.
,
2022
, “
A Multi-Objective Maintenance Strategy Optimization Framework for Offshore Wind Farms Considering Uncertainty
,”
Appl. Energy
,
321
, p.
119284
.
29.
Zhang
,
A.
,
Zhang
,
T.
,
Barros
,
A.
, and
Liu
,
Y.
,
2020
, “
Optimization of Maintenances Following Proof Tests for the Final Element of a Safety-Instrumented System
,”
Reliab. Eng. Syst. Saf.
,
196
, p.
106779
.
30.
uit het Broek
,
M. A.
,
Veldman
,
J.
,
Fazi
,
S.
, and
Greijdanus
,
R.
,
2019
, “
Evaluating Resource Sharingfor Offshore Wind Farm Maintenance: The Case of Jack-Up Vessels
,”
Renew. Sustain. Energy Rev
,
109
, pp.
619
632
.
31.
Mirjalili
,
S.
,
Gandomi
,
A. H.
,
Mirjalili
,
S. Z.
,
Saremi
,
S.
,
Faris
,
H.
, and
Mirjalili
,
S. M.
,
2017
, “
Salp Swarm Algorithm: A Bio-Inspired Optimizer for Engineering Design Problems
,”
Adv. Eng. Softw.
,
114
(
Dec.
), pp.
163
191
.
32.
Bouchekara
,
H. R. E. H.
,
Smail
,
M. K.
,
Javaid
,
M. S.
, and
Shamsah
,
S. I.
,
2020
, “
Optimization Design of Electromagnetic Devices Using an Enhanced Salp Swarm Algorithm
,”
Appl. Comput. Electromagn. Soc. J.
,
35
(
12
), pp.
1471
1476
.
33.
Carroll
,
J.
,
Mcdonald
,
A.
, and
Mcmillan
,
D.
,
2015
, “
Failure Rate, Repair Time and Unscheduled O&M Cost Analysis of Offshore Wind Turbines
,”
Wind Energy
,
19
(
6
), pp.
1107
1119
.
34.
Kang
,
J.
,
Wang
,
Z.
, and
Guedes Soares
,
C.
,
2020
, “
Condition-Based Maintenance for Offshore Wind Turbines Based on Support Vector Machine
,”
Energies
,
13
(
14
), p.
3518
.
35.
Dinwoodie
,
I.
,
Endrerud
,
O. E. V.
,
Hofmann
,
M.
,
Martin
,
R.
, and
Sperstad
,
I. B.
,
2015
, “
Reference Cases for Verification of Operation and Maintenance Simulation Models for Offshore Wind Farms
,”
Wind Eng.
,
39
(
1
), pp.
1
14
.
36.
Scheu
,
M. N.
,
Tremps
,
L.
,
Smolka
,
U.
,
Kohos
,
A.
, and
Brennan
,
F.
,
2019
, “
A Systematic Failure Mode Effects and Criticality Analysis for Offshore Wind Turbine Systems Towards Integrated Condition Based Maintenance Strategies
,”
Ocean Eng.
,
176
, pp.
118
133
.
37.
Håbrekke
,
S.
,
Hauge
,
S.
, and
Lundteigen
,
M. A.
,
2008
, “
Guidelines for follow-up of Safety Instrumented Systems (SIS) in the Operating Phase
,”
SINTEF
,
8788
, p.
2008
.
You do not currently have access to this content.