Abstract

This study aims to compare the influence of residual tensile and compressive stresses resulting from welding on the fatigue crack propagation. The development of fatigue fractures within zones characterized by residual tensile and compressive stresses is investigated using numerical simulations. A quantitative evaluation of the impact of residual stresses on the crack propagation is conducted by comparing the crack opening loads in cases with and without residual stresses. A series of comparative analyses of crack closure parameters is performed to examine the effects of changes in the load level (e.g., load ratio, maximum load, and overload ratio) on the release and redistribution of welding residual stresses. The research findings indicate that the influence coefficients for residual tensile stress and compressive stress on the fatigue crack propagation are 0.65 and 1.5, respectively. Increasing the cyclic loading amplitude and overloading are beneficial for reducing the difference in crack closure parameters between cases with residual stress and those without, weakening the influence of welding residual stress on the crack growth.

References

1.
Lepore
,
M. A.
, and
Berto
,
F.
,
2019
, “
On the Fatigue Propagation of Multiple Cracks in Friction Stir Weldments Using Linear and Non-Linear Models Under Cyclic Tensile Loading
,”
Eng. Fract. Mech.
,
206
, pp.
463
484
.
2.
Lee
,
C.
, and
Chang
,
K.
,
2011
, “
Finite Element Computation of Fatigue Growth Rates for Mode I Cracks Subjected to Welding Residual Stresses
,”
Eng. Fract. Mech.
,
78
(
13
), pp.
2505
2520
.
3.
Citarella
,
R.
,
Carlone
,
P.
,
Lepore
,
M.
, and
Sepe
,
R.
,
2016
, “
Hybrid Technique to Assess the Fatigue Performance of Multiple Cracked FSW Joints
,”
Eng. Fract. Mech.
,
162
, pp.
38
50
.
4.
Lepore
,
M. A.
,
Carlone
,
P.
,
Berto
,
F.
, and
Sonne Mads
,
R.
,
2017
, “
A FEM Based Methodology to Simulate Multiple Crack Propagation in Friction Stir Welds
,”
Eng. Fract. Mech.
,
184
, pp.
154
167
.
5.
Lepore
,
M. A.
,
Maligno
,
A. R.
, and
Berto
,
F.
,
2019
, “
Crack Closure in Friction Stir Weldment Using Non-Linear Model for Fatigue Crack Propagation
,”
Fatigue Fract. Eng. Mater. Struct.
,
42
(
11
), pp.
2596
2608
.
6.
Qiang
,
B.
, and
Wang
,
X.
,
2020
, “
Evaluating Stress Intensity Factors for Surface Cracks in an Orthotropic Steel Deck Accounting for the Welding Residual Stresses
,”
Theor. Appl. Fract. Mech.
,
110
, p.
102827
.
7.
Gao
,
X. D.
,
Shao
,
Y. B.
,
Chen
,
C.
, and
Zhu
,
H. M.
,
2023
, “
Investigation on Residual Stress of EQ56 High Strength Steel Butt Weld
,”
Ocean. Eng.
,
279
, p.
114405
.
8.
Chen
,
Z. H.
,
Liu
,
Y.
,
Qian
,
H. L.
,
Wang
,
P.
, and
Liu
,
Y. Z.
,
2023
, “
Effect of Repair Welding on the Fatigue Behavior of AA6082-T6T-Joints in Marine Structures Based on FFS and Experiments
,”
Ocean. Eng.
,
281
, p.
114676
.
9.
Chen
,
Z. H.
,
Yu
,
B. L.
,
Wang
,
P.
, and
Qian
,
H. L.
,
2023
, “
Fatigue Properties Evaluation of Fillet Weld Joints in Full-Scale Steel Marine Structures
,”
Ocean. Eng.
,
270
, p.
113651
.
10.
Huang
,
X. P.
, and
Moan
,
T.
,
2007
, “
Improved Modeling of the Effect of R-Ratio on Crack Growth Rate
,”
Int. J. Fatigue.
,
29
(
4
), pp.
591
602
.
11.
Okorokov
,
V.
,
MacKenzie
,
D.
,
Gorash
,
Y.
,
Morgantini
,
M.
,
van Rijswick
,
R.
, and
Comlekci
,
T.
,
2018
, “
High Cycle Fatigue Analysis in the Presence of Autofrettage Compressive Residual Stress
,”
Fatigue Fract. Eng. Mater. Struct.
,
41
(
11
), pp.
2305
2320
.
12.
Shakeri
,
I.
,
Shahani
,
A. R.
, and
Rans
,
C. D.
,
2021
, “
Fatigue Crack Growth of Butt Welded Joints Subjected to Mixed Mode Loading and Overloading
,”
Eng. Fract. Mech.
,
241
, p.
107376
.
13.
Bao
,
R.
,
Zhang
,
X.
, and
Yahaya
,
N. A.
,
2010
, “
Evaluating Stress Intensity Factors Due to Weld Residual Stresses by the Weight Function and Finite Element Methods
,”
Eng. Fract. Mech.
,
77
(
13
), pp.
2550
2566
.
14.
Wang
,
Q.
,
Huber
,
N.
,
Liu
,
X. S.
, and
Kashaev
,
N.
,
2022
, “
On the Analysis of Plasticity Induced Crack Closure in Welded Specimens: A Mechanism Controlled by the Stress Intensity Factor Resulting From Residual Stresses
,”
Int. J. Fatigue.
,
162
, p.
106940
.
15.
Paris
,
P.
, and
Erdogan
,
F.
,
1963
, “
A Critical Analysis of Crack Propagation Laws
,”
ASME J. Fluids Eng.
,
85
(
4
), pp.
528
533
.
16.
Elber
,
W.
,
1970
, “
Fatigue Crack Closure Under Cyclic Tension
,”
Eng. Fract. Mech.
,
2
(
1
), pp.
37
45
.
17.
Ahmed
,
M.
,
Islam
,
M. S.
,
Yin
,
S.
,
Coull
,
R.
, and
Rozumek
,
D.
,
2021
, “
Fatigue Crack Growth Behaviour and Role of Roughness-Induced Crack Closure in CP Ti: Stress Amplitude Dependence
,”
Metals
,
11
(
10
), p.
1656
.
18.
Beghini
,
M.
,
Bertini
,
L.
, and
Vitale
,
E.
,
1994
, “
Fatigue Crack Growth in Residual Stress Fields: Experimental Results and Modeling
,”
Fatigue Fract. Eng. Mater. Struct.
,
17
(
12
), pp.
1433
1444
.
19.
Liljedahl
,
C. D. M.
,
Tan
,
M. L.
,
Zanellato
,
O.
,
Ganguly
,
S.
,
Fitzpatrick
,
M. E.
, and
Edwards
,
L.
,
2008
, “
Evolution of Residual Stresses With Fatigue Loading and Subsequent Crack Growth in a Welded Aluminium Alloy Middle Tension Specimen
,”
Eng. Fract. Mech.
,
75
(
13
), pp.
3881
3894
.
20.
Rozumek
,
D.
,
Lewandowski
,
J.
,
Lesiuk
,
G.
, and
Correia
,
J. A.
,
2020
, “
The Influence of Heat Treatment on the Behavior of Fatigue Crack Growth in Welded Joints Made of S355 Under Bending Loading
,”
Int. J. Fatigue.
,
131
, p.
105328
.
21.
Larue
,
J. E.
, and
Daniewicz
,
S. R.
,
2007
, “
Predicting the Effect of Residual Stress on Fatigue Crack Growth
,”
Int. J. Fatigue.
,
29
(
3
), pp.
508
515
.
22.
Keller
,
S.
, and
Klusemann
,
B.
,
2021
, “
Application of Stress Intensity Factor Superposition in Residual Stress Fields Considering Crack Closure
,”
Eng. Fract. Mech.
,
243
, p.
107415
.
23.
Garcia
,
C.
,
Lotz
,
T.
,
Martinez
,
M.
,
Artemev
,
A.
,
Alderliesten
,
R.
, and
Benedictus
,
R.
,
2016
, “
Fatigue Crack Growth in Residual Stress Fields
,”
Int. J. Fatigue.
,
87
, pp.
326
338
.
24.
Song
,
Y. L.
,
Yang
,
P.
,
Peng
,
Z. Y.
, and
Jiang
,
W.
,
2020
, “
Low-Cycle Fatigue Crack Propagation Behavior of Cracked Steel Plates Considering Accumulative Plastic Strain
,”
Int. J. Steel. Struct.
,
20
(
2
), pp.
1
10
.
25.
Song
,
Y. L.
,
Yang
,
P.
,
Hu
,
K.
,
Jiang
,
W.
, and
Zhang
,
G. L.
,
2021
, “
Study of Low-Cycle Fatigue Crack Growth Behavior of Central-Cracked Stiffened Plates
,”
Ocean. Eng.
,
241
, p.
110083
.
26.
Peng
,
Z. Y.
,
Yang
,
P.
,
Song
,
Y. L.
, and
Hu
,
K.
,
2023
, “
Three-Dimensional Fracture Analysis of Large Opening Box Girder With Crack Damage Under Bending and Torsion Loads
,”
ASME J. Offshore. Mech. Arct. Eng.
,
145
(
5
), p.
051701
.
27.
Peng
,
Z. Y.
,
Song
,
Y. L.
,
Yang
,
P.
, and
Hu
,
K.
,
2024
, “
Stress Intensity Factor Analysis for Mixed-Mode Fracture Behavior of Inclined Semi-Elliptical Surface Crack in Stiffened Plate Under Tension Load
,”
Ocean. Eng.
,
291
, p.
116405
.
28.
Peng
,
Z. Y.
,
Yang
,
P.
,
Hu
,
K.
, and
Song
,
Y. L.
,
2020
, “
Study on Crack Closure Considering Welding Residual Stress Under Constant Amplitude Loading and Overloading
,”
J. Mar. Sci. Appl.
,
19
(
2
), pp.
195
207
.
29.
Song
,
Y. L.
,
Dong
,
Q.
,
Zhang
,
J. P.
,
Li
,
G. Q.
,
Xu
,
D. F.
, and
Yang
,
P.
,
2024
, “
A Prediction Method for Fatigue Crack Growth Under High Stress Levels Using Accumulative Plastic Damage Properties
,”
Mar. Struct.
,
93
, p.
103535
.
30.
De Matos
,
P.
, and
Nowell
D.
2008
, “
Numerical Simulation of Plasticity-Induced Fatigue Crack Closure With Emphasis on the Crack Growth Scheme: 2D and 3D Analyses
,”
Eng. Fract. Mech.
,
75
(
8
), pp.
2087
2114
.
31.
Antunes
,
F. V.
, and
Rodrigues
,
D. M.
,
2008
, “
Numerical Simulation of Plasticity Induced Crack Closure: Identification and Discussion of Parameters
,”
Eng. Fract. Mech.
,
75
(
10
), pp.
3101
3120
.
32.
Lv
,
H. T.
,
Wang
,
J. M.
, and
Liu
,
X. R.
,
2016
, “
Numerical Simulation for Residual Stress Field of Shot-Peening on Crack Closure Effect
,”
China Surf. Eng.
,
29
(
2
), pp.
102
110
.
You do not currently have access to this content.