Abstract

The probabilistic-based design method is gaining attention in designing offshore wind turbines (OWTs) owing to its economic design. However, the numerous uncertain design variables and the tiny target annual failure probability make it unaffordable to achieve a reliable and economic design. Conducting sensitivity analysis (SA) is a common strategy to identify nonsignificant variables, thereby reducing the uncertainty space and accelerating the design process. To this end, this study aims to identify the factors significantly influencing the dynamic characteristics of OWTs from the structural geometrical, material properties, environmental, and soil uncertainties by conducting SA. Primarily, an improved method integrating the polynomial chaos expansion (PCE) strategy with the traditional Morris screening method was proposed to accelerate the SA process, and it was further validated by comparing the natural frequency results with those of the PCE-based Sobol method. A comprehensive SA study was then carried out to explore the dominant variables highly influencing the representative dynamic responses using the proposed method. The results indicated that the pile foundation bending stiffness has a remarkable effect on the natural frequency following Young's modulus E and tower thickness t, and wind loads serve as the most prominent factor influencing support structural dynamic responses. Furthermore, according to the observed remarkable influence of the pile foundation stiffness parameter on the structural stress, it proved the necessity of introducing the coupled numerical model in the SA for OWT.

References

1.
Elias
,
S.
,
2024
, “
Vibration Improvement of Offshore Wind Turbines Under Multiple Hazards
,”
Structures
,
59
, p.
105800
.
2.
Zhang
,
J.
,
Liang
,
X.
,
Wang
,
B.
,
You
,
P.
, and
Yun
,
L.
,
2024
, “
Vibration Reduction and Energy Harvesting of Monopile Offshore Wind Turbines Under Extreme Wind-Wave Loadings Using a Novel Bidirectional Absorber-Harvester
,”
Structures
,
66
, p.
106790
.
3.
Han
,
F.
,
Li
,
X.
,
Shi
,
W.
,
Wang
,
B.
, and
Wang
,
W.
,
2024
, “
Generic Fully Coupled Framework for Reliability Assessment of Offshore Wind Turbines Under Typical Limit States
,”
Eng. Struct.
,
304
, p.
117692
.
4.
Sun
,
Y.
,
Li
,
H.
,
Sun
,
L.
, and
Guedes Soares
,
C.
,
2023
, “
Failure Analysis of Floating Offshore Wind Turbines With Correlated Failures
,”
Reliab. Eng. Syst. Saf.
,
238
, p.
109485
.
5.
Global Wind Energy Council
,
2024
, “Global Wind Report 2024,” https://gwec.net/global-wind-report-2024/, Accessed May 12, 2024.
6.
Veers
,
P.
,
Dykes
,
K.
,
Lantz
,
E.
,
Barth
,
S.
,
Bottasso
,
C. L.
,
Carlson
,
O.
, et al
,
2019
, “
Grand Challenges in the Science of Wind Energy
,”
Science
,
366
(
6464
), p.
eaau2027
.
7.
Zhang
,
L.
,
Michailides
,
C.
,
Wang
,
Y.
, and
Shi
,
W.
,
2020
, “
Moderate Water Depth Effects on the Response of a Floating Wind Turbine
,”
Structures
,
28
, pp.
1435
1448
.
8.
IEC
,
2019a
, “
Wind Energy Generation Systems—Part 3-1: Design Requirements for Fixed Offshore Wind Turbines
,” IEC 61400-3-1.
9.
IEC
,
2019
, “
Wind Energy Generation Systems—Part 1: Design Requirements
,” IEC 61400-1.
10.
DNV
,
2014
, “
Design of Offshore Wind Turbine Structures
,” DNV-OS-J101.
11.
DNV GL
,
2018
, “
Floating Wind Turbine Structures
,” DNVGL-ST-0119.
12.
Yang
,
H.
,
Zhu
,
Y.
,
Lu
,
Q.
, and
Zhang
,
J.
,
2015
, “
Dynamic Reliability Based Design Optimization of the Tripod Sub-structure of Offshore Wind Turbines
,”
Renew. Energy
,
78
, pp.
16
25
.
13.
Leimeister
,
M.
, and
Kolios
,
A.
,
2021
, “
Reliability-Based Design Optimization of a Spar-Type Floating Offshore Wind Turbine Support Structure
,”
Reliab. Eng. Syst. Saf.
,
213
, p.
107666
.
14.
Dong
,
W.
,
Moan
,
T.
, and
Gao
,
Z.
,
2012
, “
Fatigue Reliability Analysis of the Jacket Support Structure for Offshore Wind Turbine Considering the Effect of Corrosion and Inspection
,”
Reliab. Eng. Syst. Saf.
,
106
, pp.
11
27
.
15.
Horn
,
J.-T.
, and
Leira
,
B. J.
,
2019
, “
Fatigue Reliability Assessment of Offshore Wind Turbines With Stochastic Availability
,”
Reliab. Eng. Syst. Saf.
,
191
, p.
106550
.
16.
Li
,
Y.
,
Liu
,
Z.
,
He
,
Z.
,
Tu
,
L.
, and
Huang
,
H. Z.
,
2023
, “
Fatigue Reliability Analysis and Assessment of Offshore Wind Turbine Blade Adhesive Bonding Under the Coupling Effects of Multiple Environmental Stresses
,”
Reliab. Eng. Syst. Saf.
,
238
, p.
109426
.
17.
Jiang
,
Z.
,
Huang
,
X.
,
Wang
,
B.
,
Liao
,
X.
,
Liu
,
H.
, and
Ding
,
P.
,
2024
, “
Time-Dependent Reliability-Based Design Optimization of Main Shaft Bearings in Wind Turbines Involving Mixed-Integer Variables
,”
Reliab. Eng. Syst. Saf.
,
243
, p.
109817
.
18.
Zhang
,
X.
,
Dimitrov
,
N. K.
,
Nielsen
,
J. S.
,
Kalathiparambil Abeendranath
,
A.
, and
Sørensen
,
J. D.
,
2023
,
Probwind D10: Pre-standard for Probabilistic Design and Background Document
,
Aalborg University
,
Aalborg, Denmark
.
19.
Tsvetkova
,
O.
, and
Ouarda
,
T. B. M. J.
,
2021
, “
A Review of Sensitivity Analysis Practices in Wind Resource Assessment
,”
Energy Convers. Manage.
,
238
, p.
114112
.
20.
Antoniadis
,
A.
,
Lambert-Lacroix
,
S.
, and
Poggi
,
J. M.
,
2021
, “
Random Forests for Global Sensitivity Analysis: A Selective Review
,”
Reliab. Eng. Syst. Saf.
,
206
, p.
107312
.
21.
Xiong
,
Q.
,
Du
,
P.
,
Deng
,
J.
,
Huang
,
D.
,
Song
,
G.
,
Qian
,
L.
, et al
,
2022
, “
Global Sensitivity Analysis for Nuclear Reactor LBLOCA With Time-Dependent Outputs
,”
Reliab. Eng. Syst. Saf.
,
221
, p.
108337
.
22.
Shang
,
Y.
,
Nogal
,
M.
,
Teixeira
,
R.
, and
Wolfert
,
A.
,
2024
, “
Extreme-Oriented Sensitivity Analysis Using Sparse Polynomial Chaos Expansion. Application to Train–Track–Bridge Systems
,”
Reliab. Eng. Syst. Saf.
,
243
, p.
109818
.
23.
Glišić
,
A.
,
Ferraz
,
G.
, and
Schaumann
,
P.
,
2017
, “
Sensitivity Analysis of Monopiles' Fatigue Stresses to Site Conditions Using Monte Carlo Simulation
,”
Proceedings of the Twenty-Seventh International Ocean and Polar Engineering Conference
,
San Francisco, CA
,
June 25–30
, pp.
305
311
.
24.
Hübler
,
C.
,
Gebhardt
,
C. G.
, and
Rolfes
,
R.
,
2017
, “
Hierarchical Four-Step Global Sensitivity Analysis of Offshore Wind Turbines Based on Aeroelastic Time Domain Simulations
,”
Renew. Energy
,
111
, pp.
878
891
.
25.
Hübler
,
C.
,
2020
, “
Global Sensitivity Analysis for Medium-Dimensional Structural Engineering Problems Using Stochastic Collocation
,”
Reliab. Eng. Syst. Saf.
,
195
, p.
106749
.
26.
Velarde
,
J.
,
Kramhøft
,
C.
, and
Sørensen
,
J. D.
,
2019
, “
Global Sensitivity Analysis of Offshore Wind Turbine Foundation Fatigue Loads
,”
Renew. Energy
,
140
, pp.
177
189
.
27.
Sørum
,
S. H.
,
Katsikogiannis
,
G.
,
Bachynski Polić
,
E. E.
,
Amdahl
,
J.
,
Page
,
A. M.
, and
Klinkvort
,
R. T.
,
2022
, “
Fatigue Design Sensitivities of Large Monopile Offshore Wind Turbines
,”
Wind Energy
,
25
(
10
), pp.
1684
1709
.
28.
Ren
,
C.
,
Aoues
,
Y.
,
Lemosse
,
D.
, and
De Cursi
,
E. S.
,
2020
,
Global Sensitivity Analysis of Offshore Wind Turbine Jacket
,
Springer International Publishing
,
Cham
, pp.
35
48
.
29.
Ren
,
C.
,
Aoues
,
Y.
,
Lemosse
,
D.
, and
De Cursi
,
E. S.
,
2023
, “
Reliability Assessment of an Offshore Wind Turbine Jacket Under One Ultimate Limit State Considering Stress Concentration With Active Learning Approaches
,”
Ocean Eng.
,
281
, p.
114657
.
30.
Rinker
,
J. M.
,
2016
, “
Calculating the Sensitivity of Wind Turbine Loads to Wind Inputs Using Response Surfaces
,”
J. Phys. Conf. Ser..
,
753
(
3
), p.
032057
.
31.
Dimitrov
,
N.
,
Kelly
,
M. C.
,
Vignaroli
,
A.
, and
Berg
,
J.
,
2018
, “
From Wind to Loads: Wind Turbine Site-Specific Load Estimation With Surrogate Models Trained on High-Fidelity Load Databases
,”
Wind Energy Sci.
,
3
(
2
), pp.
767
790
.
32.
Robertson
,
A. N.
,
Shaler
,
K.
,
Sethuraman
,
L.
, and
Jonkman
,
J.
,
2019
, “
Sensitivity Analysis of the Effect of Wind Characteristics and Turbine Properties on Wind Turbine Loads
,”
Wind Energy Sci.
,
4
(
3
), pp.
479
513
.
33.
Thapa
,
M.
, and
Missoum
,
S.
,
2022
, “
Uncertainty Quantification and Global Sensitivity Analysis of Composite Wind Turbine Blades
,”
Reliab. Eng. Syst. Saf.
,
222
, p.
108354
.
34.
Morris
,
M. D.
,
1991
, “
Factorial Sampling Plans for Preliminary Computational Experiments
,”
Technometrics
,
33
(
2
), pp.
161
174
.
35.
Campolongo
,
F.
,
Cariboni
,
J.
, and
Saltelli
,
A.
,
2007
, “
An Effective Screening Design for Sensitivity Analysis of Large Models
,”
Environ. Modell. Softw.
,
22
(
10
), pp.
1509
1518
.
36.
Sudret
,
B.
,
2008
, “
Global Sensitivity Analysis Using Polynomial Chaos Expansions
,”
Reliab. Eng. Syst. Saf.
,
93
(
7
), pp.
964
979
.
37.
Ramezani
,
M.
,
Choe
,
D.
,
Heydarpour
,
K.
, and
Koo
,
B.
,
2023
, “
Uncertainty Models for the Structural Design of Floating Offshore Wind Turbines: A Review
,”
Renew. Sustain. Energy Rev.
,
185
, p.
113610
.
38.
DNV
,
1992
,
DNV Classification Notes 30.6-Structural Reliability Analysis of Marine Structures
,
Det Norske Veritas
,
Oslo
.
39.
Han
,
F.
,
Wang
,
W.
,
Zheng
,
X. W.
,
Han
,
X.
,
Shi
,
W.
, and
Li
,
X.
,
2025
, “
Investigation of Essential Parameters for the Design of Offshore Wind Turbine Based on Structural Reliability
,”
Reliab. Eng. Syst. Safe.
,
254
, p.
110601
.
40.
Li
,
C.
,
Diao
,
Y.
,
Li
,
H.
,
Pan
,
H.
,
Ma
,
R.
,
Han
,
Q.
, et al
,
2023
, “
Seismic Performance Assessment of a Sea-Crossing Cable-Stayed Bridge System Considering Soil Spatial Variability
,”
Reliab. Eng. Syst. Saf.
,
235
, p.
109210
.
41.
NREL
,
2021
, “
OpenFAST v3.0.0 Documentation
,” https://openfast.readthedocs.io/en/master/
42.
Damiani
,
R.
,
Jonkman
,
J.
, and
Hayman
,
G.
,
2015
,
SubDyn User's Guide and Theory Manual
,
National Renewable Energy Laboratory
,
Golden, CO
.
43.
Jonkman
,
B. J.
,
2009
,
TurbSim User's Guide: Version 1.50
,
National Renewable Energy Laboratory
,
Golden, CO
.
44.
Shittu
,
A. A.
,
Mehmanparast
,
A.
,
Amirafshari
,
P.
,
Hart
,
P.
, and
Kolios
,
A.
,
2022
, “
Sensitivity Analysis of Design Parameters for Reliability Assessment of Offshore Wind Turbine Jacket Support Structures
,”
Int. J. Nav. Archit. Ocean
,
14
, p.
100441
.
45.
Morató
,
C. A.
,
Sriramula
,
S.
, and
Krishnan
,
N.
,
2019
, “
Kriging Models for Aero-elastic Simulations and Reliability Analysis of Offshore Wind Turbine Support Structures
,”
Ships Offshore Struct.
,
14
(
6
), pp.
545
558
.
46.
Shittu
,
A. A.
,
Mehmanparast
,
A.
,
Wang
,
L.
,
Salonitis
,
K.
, and
Kolios
,
A.
,
2020
, “
Comparative Study of Structural Reliability Assessment Methods for Offshore Wind Turbine Jacket Support Structures
,”
Appl. Sci.
,
10
(
3
), p.
860
.
47.
Lelièvre
,
N.
,
Beaurepaire
,
P.
,
Mattrand
,
C.
, and
Gayton
,
N.
,
2018
, “
AK-MCSi: A Kriging-Based Method to Deal With Small Failure Probabilities and Time-Consuming Models
,”
Struct. Saf.
,
73
, pp.
1
11
.
48.
Nguyen
,
P.
, and
Manuel
,
L.
,
2024
, “
Uncertainty Quantification in Low-Probability Response Estimation Using Sliced Inverse Regression and Polynomial Chaos Expansion
,”
Reliab. Eng. Syst. Saf.
,
242
, p.
109750
.
49.
Wu
,
J.
,
Tao
,
Y.
, and
Han
,
X.
,
2023
, “
Polynomial Chaos Expansion Approximation for Dimension-Reduction Model-Based Reliability Analysis Method and Application to Industrial Robots
,”
Reliab. Eng. Syst. Saf.
,
234
, p.
109145
.
50.
Sudret
,
B.
,
2020
, “
Acceptable LOO Error
,” https://uqworld.org/t/acceptable-loo-error/681/4, Accessed March 10, 2024.
51.
Pati
,
Y.
,
Rezaiifar
,
R.
, and
Krishnaprasad
,
P.
,
1993
, “
Orthogonal Matching Pursuit: Recursive Function Approximation With Applications to Wavelet Decomposition
,”
Proceedings of 27th Asilomar Conference on Signals, Systems and Computers
,
Pacific Grove, CA
,
Nov. 1–3
, pp.
40
44
.
52.
Deman
,
G.
,
Konakli
,
K.
,
Sudret
,
B.
,
Kerrou
,
J.
,
Perrochet
,
P.
, and
Benabderrahmane
,
H.
,
2016
, “
Using Sparse Polynomial Chaos Expansions for the Global Sensitivity Analysis of Groundwater Lifetime Expectancy in a Multi-layered Hydrogeological Model
,”
Reliab. Eng. Syst. Saf.
,
147
, pp.
156
169
.
53.
Saltelli
,
A.
,
Ratto
,
M.
,
Andres
,
T.
,
Campolongo
,
F.
,
Cariboni
,
J.
,
Gatelli
,
D.
, et al
,
2008
,
Global Sensitivity Analysis: The Primer
,
John Wiley & Sons
,
Chichester, UK
.
54.
Marelli
,
S.
,
Lamas
,
C.
,
Konakli
,
K.
,
Mylonas
,
C.
,
Wiederkehr
,
P.
, and
Sudret
,
B.
,
2022
,
UQLab User Manual—Sensitivity Analysis, Report UQLab-V2.0-106, Chair of Risk, Safety and Uncertainty Quantification
,
ETH Zurich
,
Switzerland
.
55.
Jonkman
,
J.
,
Butterfield
,
S.
,
Musial
,
W.
, and
Scott
,
G.
,
2009
, “
Definition of a 5-MW Reference Wind Turbine for Offshore System Development
,” National Renewable Energy Laboratory, Golden, CO, Technical Report NREL/TP-500-38060.
56.
Jonkman
,
J.
, and
Musial
,
W.
,
2010
, “
Offshore Code Comparison Collaboration (OC3) for IEA Wind Task 23 Offshore Wind Technology and Deployment
,” National Renewable Energy Laboratory, Golden, CO, Technical Report NREL/TP-5000-48191.
57.
Fischer
,
T.
,
de Vries
,
W.
, and
Schmidt
,
B.
,
2010
, “
Upwind Design Basis. WP4: Offshore Foundations and Support Structures
,” Project UpWind, Universität Stuttgart, Stuttgart.
58.
Morató
,
C. A.
,
Sriramula
,
S.
,
Krishnan
,
N.
, and
Nichols
,
J.
,
2017
, “
Ultimate Loads and Response Analysis of a Monopile Supported Offshore Wind Turbine Using Fully Coupled Simulation
,”
Renew. Energy
,
101
, pp.
126
143
.
59.
Okpokparoro
,
S.
, and
Sriramula
,
S.
,
2021
, “
Uncertainty Modeling in Reliability Analysis of Floating Wind Turbine Support Structures
,”
Renew. Energy
,
165
, pp.
88
108
.
60.
Vazirizade
,
S. M.
,
Azizsoltani
,
H.
, and
Haldar
,
A.
,
2022
, “
Reliability Estimation of Jacket Type Offshore Platforms Against Seismic and Wave Loadings Applied in Time Domain
,”
Ships Offshore Struct.
,
17
(
1
), pp.
143
152
.
61.
API
,
2007
, “
Recommended Practice for Planning, Designing and Constructing Fixed Offshore Platforms—Working Stress Design
,” Recommended Practice RP 2A-WSD.
62.
Joint Committee on Structural Safety (JCSS)
,
2006
,
Probabilistic Model Code
,
JCSS
. https://www.jcss-lc.org/jcss-probabilistic-model-code/
63.
Jalbi
,
S.
,
Nikitas
,
G.
,
Bhattacharya
,
S.
, and
Alexander
,
N.
,
2019
, “
Dynamic Design Considerations for Offshore Wind Turbine Jackets Supported on Multiple Foundations
,”
Marine Struct.
,
67
, p.
102631
.
64.
Liu
,
Y.
,
Wang
,
W.
,
Shi
,
W.
,
Li
,
X.
, and
Li
,
Y.
,
2022
, “
Dynamic Responses of Monopile Wind Turbine With Coupled Spring Boundaries in Bed Rock-Soil-Seawater Offshore Site Under Offshore Ground Motions
,”
Int. J. Soil Dyn. Earthquake Eng.
,
158
, p.
107311
.
65.
De Risi
,
R.
,
Bhattacharya
,
S.
, and
Goda
,
K.
,
2018
, “
Seismic Performance Assessment of Monopile Supported Offshore Wind Turbines Using Unscaled Natural Earthquake Records
,”
Soil Dyn. Earthq. Eng.
,
109
, pp.
154
172
.
66.
Sajeer
,
M. M.
,
Mitra
,
A.
, and
Chakraborty
,
A.
,
2021
, “
Multi-body Dynamic Analysis of Offshore Wind Turbine Considering Soil-Structure Interaction for Fatigue Design of Monopile
,”
Soil. Dyn. Earthq. Eng.
,
144
, p.
106674
.
67.
Murcia
,
J. P.
,
Réthoré
,
P. E.
,
Dimitrov
,
N.
,
Natarajan
,
A.
,
Sørensen
,
J. D.
,
Graf
,
P.
, and
Kim
,
T.
,
2018
, “
Uncertainty Propagation Through an Aeroelastic Wind Turbine Model Using Polynomial Surrogates
,”
Renew. Energy
,
119
, pp.
910
922
.
You do not currently have access to this content.