Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

To promote the automation and intelligence of marine floating object transportation, this paper proposes a cooperative consensus control algorithm for multiple unmanned dynamic positioning (DP) tugboats to transport an unactuated floating structure object using cables. The major concept of present algorithm is to implement a leader-follower formation strategy among distributed tugboats, with the aim of effectively maneuvering the object by adjusting the relative position between the virtual leader and the object in a reasonable manner. A cooperative consensus controller is integrated into the feedback controller of each tugboat local DP system in order to facilitate cooperative coordination among tugboats in a formation. A customized DP system, which incorporates the radial basis function neural network supervisor control into the DP controller design and introduces nonlinear disturbance observer into the low-frequency motion state observer design, is proposed to address cable tension disturbances, and thus, the tracking performance of the DP tugboat is improved. Full-scale nonlinear time domain simulations are performed under variable environmental conditions, verifying the effectiveness of the proposed automatic towing control scheme.

References

1.
Dong
,
Z.
,
Zhang
,
Z.
,
Qi
,
S.
,
Zhang
,
H.
,
Li
,
J.
, and
Liu
,
Y.
,
2023
, “
Autonomous Cooperative Formation Control of Underactuated USVS Based on Improved MPC in Complex Ocean Environment
,”
Ocean Eng.
,
270
, p.
113633
.
2.
Zhu
,
Y.
,
Bai
,
J.
, and
Guo
,
G.
,
2023
, “
Cooperative Target Substitution Tracking Control of Multiple Unmanned Surface Vehicles With Substitute Usvs
,”
Ocean Eng.
,
273
, p.
113903
.
3.
Chen
,
L.
,
Hopman
,
H.
, and
Negenborn
,
R. R.
,
2019
, “
Distributed Model Predictive Control for Cooperative Floating Object Transport With Multi-Vessel Systems
,”
Ocean Eng.
,
191
, p.
106515
.
4.
An
,
X.
,
Wu
,
C.
,
Lin
,
Y.
,
Lin
,
M.
,
Yoshinaga
,
T.
, and
Ji
,
Y.
,
2023
, “
Multi-robot Systems and Cooperative Object Transport: Communications, Platforms, and Challenges
,”
IEEE Open J. Comput. Soc.
,
4
, pp.
23
36
.
5.
Fossen
,
T. I.
,
2011
,
Handbook of Marine Craft Hydrodynamics and Motion Control
,
John Wiley & Sons
,
Hoboken, NJ
.
6.
Van Bui
,
P.
, and
Kim
,
Y. B.
,
2011
, “
Development of Constrained Control Allocation for Ship Berthing by Using Autonomous Tugboats
,”
Int. J. Control Autom. Syst.
,
9
(
6
), pp.
1203
1208
.
7.
Bui
,
V. P.
,
Kawai
,
H.
,
Kim
,
Y. B.
, and
Lee
,
K. S.
,
2011
, “
A Ship Berthing System Design With Four Tug Boats
,”
J. Mech. Sci. Technol.
,
25
(
5
), pp.
1257
1264
.
8.
Feemster
,
M. G.
, and
Esposito
,
J. M.
,
2011
, “
Comprehensive Framework for Tracking Control and Thrust Allocation for a Highly Overactuated Autonomous Surface Vessel
,”
J. Field Rob.
,
28
(
1
), pp.
80
100
.
9.
Bui
,
V. P.
,
Ji
,
S. W.
,
Choi
,
K. H.
, and
Kim
,
Y. B.
,
2012
, “
Nonlinear Observer and Sliding Mode Control Design for Dynamic Positioning of a Surface Vessel
,”
12th International Conference on Control, Automation and Systems
,
Jeju, South Korea
,
Oct. 17–21
, IEEE, pp.
1900
1904
.
10.
Bidikli
,
B.
,
Tatlicioglu
,
E.
, and
Zergeroglu
,
E.
,
2016
, “
Robust Dynamic Positioning of Surface Vessels Via Multiple Unidirectional Tugboats
,”
Ocean Eng.
,
113
, pp.
237
245
.
11.
Ianagui
,
A. S.
, and
Tannuri
,
E. A.
,
2019
, “
Automatic Load Maneuvering and Hold-Back With Multiple Coordinated DP Vessels
,”
Ocean Eng.
,
178
, pp.
357
374
.
12.
Wu
,
G.
,
Zhao
,
X.
,
Sun
,
Y.
, and
Wang
,
L.
,
2021
, “
Cooperative Maneuvering Mathematical Modeling for Multi-tugs Towing a Ship in the Port Environment
,”
J. Mar. Sci. Eng.
,
9
(
4
), p.
384
.
13.
Han
,
Y.
,
Zhu
,
X.
, and
Zhou
,
L.
,
2022
, “
Numerical Simulation of Multi-tug Towing of a Gravity-Based Structure in Broken Sea Ice
,”
Ocean Eng.
,
261
, p.
112070
.
14.
Han
,
Y.
,
Zhou
,
L.
,
Ding
,
S.
,
Zhang
,
M.
, and
Guan
,
Y.
,
2023
, “
Course Stability Analysis for Towing System of a Gravity-Based Structure in Managed Ice Fields
,”
Ships Offshore Struct.
,
18
(
1
), pp.
8
20
.
15.
Du
,
Z.
,
Negenborn
,
R. R.
, and
Reppa
,
V.
,
2021
, “
Cooperative Multi-agent Control for Autonomous Ship Towing Under Environmental Disturbances
,”
IEEE/CAA J. Autom. Sin.
,
8
(
8
), pp.
1365
1379
.
16.
Du
,
Z.
,
Reppa
,
V.
, and
Negenborn
,
R. R.
,
2021
, “
MPC-Based Colregs Compliant Collision Avoidance for a Multi-vessel Ship-Towing System
,”
2021 European Control Conference (ECC)
,
Delft, Netherlands
,
June 29–July 2
, IEEE, pp.
1857
1862
.
17.
Fossen
,
T. I.
,
1994
,
Guidance and Control of Ocean Vehicles
,
John Wiley and Sons Inc
,
Hoboken, NJ
.
18.
Faltinsen
,
O.
,
1993
,
Sea Loads on Ships and Offshore Structures
, Vol.
1
,
Cambridge University Press
,
Cambridge
.
19.
Liu
,
J.
,
2013
,
Radial Basis Function (RBF) Neural Network Control for Mechanical Systems: Design, Analysis and Matlab Simulation
,
Springer Science & Business Media
,
Berlin
.
20.
Fossen
,
T. I.
, and
Strand
,
J. P.
,
1999
, “
Passive Nonlinear Observer Design for Ships Using Lyapunov Methods: Full-Scale Experiments With a Supply Vessel
,”
Automatica
,
35
(
1
), pp.
3
16
.
21.
Johansen
,
T. A.
,
Fossen
,
T. I.
, and
Berge
,
S. P.
,
2004
, “
Constrained Nonlinear Control Allocation With Singularity Avoidance Using Sequential Quadratic Programming
,”
IEEE Trans. Control Syst. Technol.
,
12
(
1
), pp.
211
216
.
22.
Lewis
,
F. L.
,
Zhang
,
H.
,
Hengster-Movric
,
K.
, and
Das
,
A.
,
2013
,
Cooperative Control of Multi-Agent Systems: Optimal and Adaptive Design Approaches
,
Springer Science & Business Media
,
Berlin
.
23.
Ren
,
W.
, and
Beard
,
R. W.
,
2008
,
Distributed Consensus in Multi-Vehicle Cooperative Control
, Vol.
27
,
Springer
,
Berlin
.
24.
He
,
H.
,
Wang
,
L.
,
Wang
,
X.
,
Li
,
B.
, and
Xu
,
S.
,
2021
, “
Energy-Efficient Control of a Thruster-Assisted Position Mooring System Using Neural Q-Learning Techniques
,”
Ships Offshore Struct.
,
16
(
7
), pp.
735
746
.
25.
Mccue
,
L.
,
2016
, “
Handbook of Marine Craft Hydrodynamics and Motion Control
,”
IEEE Control Syst.
,
36
(
1
), pp.
78
79
.
You do not currently have access to this content.