Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

The decommissioning of subsea bundles presents a significant challenge to the industry. Bundles are unique to the North Sea with more than 70 bundles currently in use with diameters reaching 1400 mm. The 1992 Convention for the Protection of the Marine Environment of the North East Atlantic, which is the international treaty governing offshore decommissioning in the North East Atlantic, presumes that all installations will be removed and the London Convention prohibits dumping at sea so the decommissioning of subsea bundles is a legal requirement. This study identifies that cutting and lifting subsea bundles is the best option for decommissioning bundles and is the first use of finite element analysis to design such a tool to cut bundles and determine the forces required. This modeling of the hydraulic shear indicates that the required shearing force is 18.65 MN when using a blade with a 60-deg cutting angle and a 180-deg shape angle. The modeling further demonstrates that the shearing force varies with the cutting and shape angles. On the other hand, the modeling for the guillotine cutter indicates a required shearing force of 19 MN. This analysis demonstrates the parameters required to design a subsea bundle-cutting tool and is the first step toward developing a practical tool for decommissioning subsea bundles.

References

1.
Animashawun
,
K.
, and
Goodlad
,
M.
,
2016
, “
Pipeline Bundle Extended Length for Subsea Development
,”
Offshore Technology Conference
,
Houston, TX
,
May 2
, p. D021S026R004.
2.
OGP
,
2014
,
Options for Decommissioning Subsea Bundles
,
OGP
, International Association of Oil & Gas Producers, https://www.iogp.org/bookstore/wpcontent/uploads/sites/2/woocommerce_uploads/2017/01/469.pdf
3.
Burke
,
J.
, and
Stokes
,
A.
,
2015
, “
Preparation for Cost Effective Decommissioning and Abandonment of Subsea Pipelines
,”
SPE Offshore Europe Conference and Exhibition
,
Aberdeen, Scotland
,
Sept. 8
.
4.
Manouchehri
,
S.
,
2017
, “
Subsea Pipelines and Flowlines Decommissioning: What We Should Know for a Rational Approach
,”
ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering
,
Trondheim, Norway
,
Sept. 25
, vol. 57700, p. V05BT04A009.
5.
Small
,
A.
,
Cook
,
G.
,
Egborge
,
R.
, and
Ejidike
,
A.
,
2015
, “
Geotechnical Aspects of North Sea Decommissioning
,”
25th ISOPE International Ocean and Polar Engineering Conference
,
Kona, HI
,
June 21
.
6.
Sommer
,
B.
,
Fowler
,
A. M.
,
Macreadie
,
P. I.
,
Palandro
,
D. A.
,
Aziz
,
A. C.
, and
Booth
,
D. J.
,
2019
, “
Decommissioning of Offshore Oil and Gas Structures—Environmental Opportunities and Challenges
,”
Sci. Total Environ.
,
658
(
1
), pp.
973
981
.
7.
Department for Business, Energy & Industrial Strategy
,
2018
, “
Decommissioning of Offshore Oil and Gas Installations and Pipelines
,” https://www.gov.uk/guidance/oil-and-gas-decommissioning-of-offshore-installations-and-pipelines.
8.
OSPAR Commission
,
2020
, “Ospar Convention.” https://www.ospar.org/convention.
9.
Simms
,
M.
,
2015
, “Leadon Decommissioning Programmes.” Report No. LDP-2015.
10.
De Groote
,
P. F. N.
,
2015
, “Guillotine Shear Cutting Model for Decommissioning Purposes”.
11.
Kiliçaslan
,
C.
,
2009
, “
Modelling and Simulation of Metal Cutting by Finite Element Method
,”
Master’s thesis
,
Ýzmir Institute of Technology
,
Turkey
.
12.
Koutsolelos
,
E.
,
2012
, “
Numerical Analysis of a Shear Ram and Experimental Determination of Fracture Parameters
,”
Master’s thesis
,
Massachusetts Institute of Technology
,
Cambridge, MA
.
13.
Rodríguez
,
J. M.
,
Jonsén
,
P.
, and
Svoboda
,
A.
,
2017
, “
Simulation of Metal Cutting Using the Particle Finite-Element Method and a Physically Based Plasticity Model
,”
Comput. Part. Mech.
,
4
(
1
), pp.
35
51
.
14.
Tulimilli
,
B. R.
,
Naik
,
P.
,
Chakraborty
,
A.
,
Sawant
,
S.
,
Whooley
,
A.
, and
Weiss
,
R.
,
2014
, “
Experimental and Numerical Investigation of BOP Shear Ram Performance
,”
International Conference on Offshore Mechanics and Arctic Engineering
,
San Francisco, CA
,
Oct. 1
, Vol. 45387, p. V01BT01A057.
15.
Zhu
,
L.
,
Estefen
,
S. F.
, and
Lourenço
,
M. I.
,
2020
, “
Fracture Criteria Applied to Numerical Simulation of Blowout Preventer Ram Shearing
,”
Eng. Fail. Anal.
,
104
(
1
), p.
104596
.
16.
Han
,
C.
,
Yang
,
X.
,
Zhang
,
J.
, and
Huang
,
X.
,
2015
, “
Study of the Damage and Failure of the Shear Ram of the Blowout Preventer in the Shearing Process
,”
Eng. Fail. Anal.
,
58
(
1
), pp.
83
95
.
17.
Lin
,
T.
,
Mou
,
Y.
,
Lian
,
Z.
, and
Zhang
,
Q.
,
2019
, “
Finite Element Analysis of Fracture of a Ram BOP for Deep Gas Wells
,”
Eng. Fail. Anal.
,
98
(
1
), pp.
109
117
.
18.
Lukin
,
N.
,
Moura
,
R. T.
,
Alves
,
M.
,
Bruenig
,
M.
, and
Driemeier
,
L.
,
2020
, “
Analysis of API S-135 Steel Drill Pipe Cutting Process by Blowout Preventer
,”
J. Petrol. Sci. Eng.
,
195
(
1
), p.
107819
.
19.
Tekin
,
A.
,
Choi
,
C.
,
Altan
,
T.
, and
Adin
,
H.
,
2015
, “
Estimation of Shear Force for Blind Shear Ram Blowout Preventers
,”
Res. Eng. Struct. Mater.
,
1
(
1
), pp.
39
51
.
20.
Abaqus
,
2014
,
Abaqus Analysis User’s Manual 6.14
,
Dassault Systemes Simulia
,
Providence, RI
.
21.
Behrens
,
B.-A.
,
Brunotte
,
K.
,
Wester
,
H.
,
Kock
,
C.
, and
Kildonaviciute
,
D.
,
2022
, “
Determination of Temperature Dependence in Modified-Mohr-Coulomb Failure Model for Process Simulation of Shear Cutting
,”
International Deep-Drawing Research Group Conference (IDDRG 2022)
,
Lorient, France
,
May 1
, vol. 1238, IOP Publishing, No. 1, p.
012028
.
22.
Granum
,
H.
,
Morin
,
D.
,
Børvik
,
T.
, and
Hopperstad
,
O. S.
,
2021
, “
Calibration of the Modified Mohr-Coulomb Fracture Model by Use of Localization Analyses for Three Tempers of an AA6016 Aluminium Alloy
,”
Int. J. Mech. Sci.
,
192
(
1
), p.
106122
.
23.
Cortese
,
L.
,
Coppola
,
T.
,
Campanelli
,
F.
, and
Broggiato
,
G. B.
,
2016
, “
A J2–J3 Approach in Plastic and Damage Description of Ductile Materials
,”
Int. J. Damage Mech.
,
25
(
2
), pp.
228
250
.
24.
Puls
,
H.
,
Klocke
,
F.
, and
Lung
,
D.
,
2014
, “
Experimental Investigation on Friction Under Metal Cutting Conditions
,”
Wear
,
310
(
1–2
), pp.
63
71
.
25.
Ju
,
M.
,
Xing
,
X.
,
Wang
,
L.
,
Yun
,
F.
,
Wang
,
X.
, and
Liao
,
H.
,
2021
, “
Numerical Simulations and Experimental Study on the Reeling Process of Submarine Pipeline by R-Lay Method
,”
J. Marine Sci. Eng.
,
9
(
1
), p.
579
.
26.
Sadowski
,
A. J.
, and
Michael Rotter
,
J.
,
2013
, “
Solid or Shell Finite Elements to Model Thick Cylindrical Tubes and Shells Under Global Bending
,”
Int. J. Mech. Sci.
,
74
(
1
), pp.
143
153
.
27.
Araújo
,
M.
,
Beal
,
V.
,
Ribeiro
,
A.
, and
Junior
,
L. G.
,
2019
, “Prediction of Shear Ram BOP Cutting Force Via Finite Element Analysis.” https://www.researchgate.net/publication/335741430_Prediction_of_Shear_Ram_BOP_Cutting_Force_via_Finite_Element_Analysis.
You do not currently have access to this content.