Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Ocean current forecasting is essential for tidal renewable energy generation and operation. However, forecasting the current direction at multiple points along the water depth are still lacking of comprehensive studies. In this study, a data-driven approach was developed to attain short-term prediction in the current direction with reasonable uncertainty quantification. The developed approach employed empirical mode decomposition (EMD) and the warped Gaussian process (WGP) in the forecasting process. The ocean current data, which were measured by a seabed-mounted acoustic Doppler current profiler in the Haitian Strait, were used to illustrate the developed approach. The measured current direction data were preprocessed with the average shifting method to obtain the principal and random components for the improvement of the forecasting accuracy. The random components were decomposed into intrinsic mode functions (IMFs) and residuals. The principal components, IMFs, and residuals of the current direction were then forecasted by the WGP approach. The forecasting performance of the developed approach was investigated through comparisons with those of single standard GP, single WGP, and EMD + GP models. The effects of the kernel function and training input on the forecasting efficiency and precision were investigated. The extrapolation performances of the proposed model for a 1-step prediction and multistep-ahead prediction were also examined.

References

1.
Bahaj
,
A. S.
,
2013
, “
Marine Current Energy Conversion: The Dawn of a New Era in Electricity Production
,”
Philos. Trans. R. Soc., A
,
371
(
1985
), p.
20120500
.
2.
Wei
,
K.
,
Shang
,
D.
, and
Zhong
,
X.
,
2023
, “
Integrated Approach for Estimating Extreme Hydrodynamic Loads on Elevated Pile Cap Foundation Using Environmental Contour of Simulated Typhoon Wave, Current, and Surge Conditions
,”
ASME J. Offshore Mech. Arct. Eng.
,
145
(
2
), p.
021702
.
3.
Furst
,
G.
, and
Sud
,
S.
,
1978
, “
Raw Tidal Energy Absorption Capability of a Power System
,”
IEEE Trans. Power Appar. Syst.
,
PAS-97
(
5
), pp.
1910
1917
.
4.
Draper
,
S.
,
Houlsby
,
G. T.
,
Oldfield
,
M. L. G.
, and
Borthwick
,
A. G. L.
,
2010
, “
Modelling Tidal Energy Extraction in a Depth-Averaged Coastal Domain
,”
IET Renew. Power Gener.
,
4
(
6
), pp.
545
554
.
5.
Zhou
,
Z. B.
,
Benbouzid
,
M.
,
Charpentier
,
J. F.
,
Scuiller
,
F.
, and
Tang
,
T. H.
,
2013
, “
A Review of Energy Storage Technologies for Marine Current Energy Systems
,”
Renewable Sustainable Energy Rev.
,
18
, pp.
390
400
.
6.
Zhou
,
C.
,
So
,
R.
, and
Lam
,
K.
,
1999
, “
Vortex-Induced Vibrations of an Elastic Circular Cylinder
,”
J. Fluids Struct.
,
13
(
2
), pp.
165
189
.
7.
Wei
,
K.
,
Liu
,
Q.
, and
Qin
,
S.
,
2020
, “
Nonlinear Assessment of Offshore Steel Trestle Subjected to Wave and Current Loads
,”
Ships Offshore Struct.
,
15
(
5
), pp.
479
491
.
8.
Dong
,
X.
,
Ke
,
H.
, and
Dong
,
Z.
,
2004
, “
Application of FO-MUSIC Algorithms to Direction-Finding of Ocean Current
,”
J. Wuhan Univ.
,
50
(
3
), pp.
370
374
.
9.
Kavousi-Fard
,
A.
,
2017
, “
A Novel Probabilistic Method to Model the Uncertainty of Tidal Prediction
,”
IEEE Trans. Geosci. Remote Sens.
,
55
(
2
), pp.
828
833
.
10.
Qian
,
P.
,
Feng
,
B.
,
Liu
,
X.
,
Zhang
,
D.
,
Yang
,
J.
,
Ying
,
Y.
,
Liu
,
C.
, and
Si
,
Y.
,
2022
, “
Tidal Current Prediction Based on a Hybrid Machine Learning Method
,”
Ocean Eng.
,
260
(
2022
), p.
111985
.
11.
Benedetto
,
J. J.
,
2020
,
Harmonic Analysis and Applications
,
American Mathematical Society
,
Boca Raton, FL
.
12.
Li
,
S. D.
,
Liu
,
L. T.
,
Cai
,
S.
, and
Wang
,
G. C.
,
2019
, “
Tidal Harmonic Analysis and Prediction With Least-Squares Estimation and Inaction Method
,”
Estuarine, Coastal Shelf Sci.
,
220
, pp.
196
208
.
13.
Sarkar
,
D.
,
Osborne
,
M. A.
, and
Adcock
,
T. A. A.
,
2018
, “
Prediction of Tidal Currents Using Bayesian Machine Learning
,”
Ocean Eng.
,
158
, pp.
221
231
.
14.
Mellor
,
G. L.
,
2004
,
Users Guide for a Three-Dimensional, Primitive Equation, Numerical Ocean Model
,
Princeton University
,
Princeton, NJ
.
15.
Chen
,
C.
,
Beardsley
,
R. C.
, and
Cowles
,
G.
,
2006
, “
An Unstructured Grid, Finite-Volume Coastal Ocean Model (FVCOM) System
,”
Oceanography
,
19
(
1
), pp.
78
89
.
16.
Harms
,
I. H.
,
1997
, “
Water Mass Transformation in the Barents Sea—Application of the Hamburg Shelf Ocean Model (HamSOM)
,”
ICES J. Mar. Sci.
,
54
(
3
), pp.
351
365
.
17.
Dauji
,
S.
,
Deo
,
M. C.
, and
Bhargava
,
K.
,
2014
, “
Prediction of Ocean Currents With Artificial Neural Networks
,”
ISH J. Hydraul. Eng.
,
21
(
1
), pp.
14
27
.
18.
Jahromi
,
M. J.
,
Maswood
,
A. I.
, and
Tseng
,
K. J.
,
2010
, “
Comparison of Different Techniques for Short Term Prediction of Tidal Current Speeds
,”
IEEE Power and Energy Society General Meeting 2010
,
Minneapolis, MN
,
July 25–29
, IEEE, pp.
1
8
.
19.
Kavousi-Fard
,
A.
,
2017
, “
Modeling Uncertainty in Tidal Current Forecast Using Prediction Interval-Based SVR
,”
IEEE Trans. Sustainable Energy
,
8
(
2
), pp.
708
715
.
20.
Sarkar
,
D.
,
Osborne
,
M. A.
, and
Adcock
,
T. A. A.
,
2019
, “
Spatiotemporal Prediction of Tidal Currents Using Gaussian Processes
,”
J. Geophys. Res. Oceans
,
124
(
4
), pp.
2697
2715
.
21.
Rasmussen
,
C. E.
, and
Williams
,
C. K.
,
2006
,
Gaussian Processes for Machine Learning
,
MIT Press
,
Cambridge, MA
.
22.
Roberts
,
S.
,
Osborne
,
M.
,
Ebden
,
M.
,
Reece
,
S.
,
Gibson
,
N.
, and
Aigrain
,
S.
,
2013
, “
Gaussian Processes for Time-Series Modelling
,”
Philos. Trans. R. Soc., A
,
371
(
1984
), p.
20110550
.
23.
Kou
,
P.
,
Gao
,
F.
,
Guan
,
X.
, and
Wu
,
J.
,
2012
, “
Prediction Intervals for Wind Power Forecasting: Using Sparse Warped Gaussian Process
,”
2012 IEEE Power and Energy Society General Meeting
,
San Diego, CA
,
July 22–26
, pp.
1
8
.
24.
Bracco
,
A.
,
Chassignet
,
E. P.
,
Garraffo
,
Z. D.
, and
Provenzale
,
A.
,
2003
, “
Lagrangian Velocity Distributions in a High-Resolution Numerical Simulation of the North Atlantic
,”
J. Atmos. Oceanic Technol.
,
20
(
8
), pp.
1212
1220
.
25.
Ashkenazy
,
Y.
, and
Gildor
,
H.
,
2011
, “
On the Probability and Spatial Distribution of Ocean Surface Currents
,”
J. Phys. Oceanogr.
,
41
(
12
), pp.
2295
2306
.
26.
Snelson
,
E.
,
Ghahramani
,
Z.
, and
Rasmussen
,
C.
,
2003
, “
Warped Gaussian Processes
,”
Advances in Neural Information Processing Systems 16
,
British Columbia, Canada
,
Jan. 1
.
27.
Kou
,
P.
,
Gao
,
F.
, and
Guan
,
X.
,
2013
, “
Sparse Online Warped Gaussian Process for Wind Power Probabilistic Forecasting
,”
Appl. Energy
,
108
, pp.
410
428
.
28.
Mateo-Sanchis
,
A.
,
Munoz-Mari
,
J.
,
Perez-Suay
,
A.
, and
Camps-Valls
,
G.
,
2018
, “
Warped Gaussian Processes in Remote Sensing Parameter Estimation and Causal Inference
,”
IEEE Geosci. Remote Sens. Lett.
,
15
(
11
), pp.
1647
1651
.
29.
Gonçalves
,
ÍG
,
Echer
,
E.
, and
Frigo
,
E.
,
2020
, “
Sunspot Cycle Prediction Using Warped Gaussian Process Regression
,”
Adv. Space Res.
,
65
(
1
), pp.
677
683
.
30.
Wei
,
K.
,
Liao
,
X.
, and
Qin
,
S.
,
2022
, “
Forecasting Current Velocity and Profile in a Strait Water Using Warped Gaussian Process
,”
ASME J. Offshore Mech. Arct. Eng.
,
144
(
3
), p.
031201
.
31.
Saha
,
D.
,
Deo
,
M. C.
,
Joseph
,
S.
, and
Bhargava
,
K.
,
2016
, “
A Combined Numerical and Neural Technique for Short Term Prediction of Ocean Currents in the Indian Ocean
,”
Environ. Syst. Res.
,
5
(
1
), pp.
1
14
.
32.
Yin
,
J.-C.
,
Perakis
,
A. N.
, and
Wang
,
N.
,
2018
, “
An Ensemble Real-Time Tidal Level Prediction Mechanism Using Multiresolution Wavelet Decomposition Method
,”
IEEE Trans. Geosci. Remote Sens.
,
56
(
8
), pp.
4856
4865
.
33.
Kavousi-Fard
,
A.
,
2017
, “
A Hybrid Accurate Model for Tidal Current Prediction
,”
IEEE Trans. Geosci. Remote Sens.
,
55
(
1
), pp.
112
118
.
34.
Kavousi-Fard
,
A.
, and
Su
,
W.
,
2017
, “
A Combined Prognostic Model Based on Machine Learning for Tidal Current Prediction
,”
IEEE Trans. Geosci. Remote Sens.
,
55
(
6
), pp.
3108
3114
.
35.
Huang
,
N. E.
,
Shen
,
Z.
,
Long
,
S. R.
,
Wu
,
M. C.
,
Shih
,
H. H.
,
Zheng
,
Q.
,
Yen
,
N.-C.
,
Tung
,
C. C.
, and
Liu
,
H. H.
,
1998
, “
The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-Stationary Time Series Analysis
,”
Proc. R. Soc. A: Math. Phys. Eng. Sci.
,
454
(
1971
), pp.
903
995
.
36.
Kou
,
P.
,
Liang
,
D.
,
Gao
,
F.
, and
Gao
,
L.
,
2014
, “
Probabilistic Wind Power Forecasting With Online Model Selection and Warped Gaussian Process
,”
Energy Convers. Manage.
,
84
, pp.
649
663
.
37.
Lv
,
M.
,
Yan
,
J.
,
Yao
,
R.
, and
Li
,
B.
,
2012
, “
Study on the Statistical Method of Wind Direction
,”
J. Meteorol. Environ.
,
28
(
3
), pp.
83
89
.
38.
Wu
,
Z.
, and
Huang
,
N. E.
,
2005
, “Statistical Significance Test of Intrinsic Mode Functions,”
Hilbert-Huang Transform and Its Applications
,
N. E.
Huang
and
S. S. P.
Shen
, eds.,
World Scientific
,
Singapore
, pp.
107
127
. .
39.
Torres
,
M. E.
,
Colominas
,
M. A.
,
Schlotthauer
,
G.
, and
Flandrin
,
P.
,
2011
, “
A Complete Ensemble Empirical Mode Decomposition With Adaptive Noise
,”
2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
,
Prague, Czech Republic
,
May 22–27
, pp.
4144
4147
.
40.
Dragomiretskiy
,
K.
, and
Zosso
,
D.
,
2014
, “
Variational Mode Decomposition
,”
IEEE Trans. Signal Process.
,
62
(
3
), pp.
531
544
.
You do not currently have access to this content.