Abstract

The purpose of the current study is to recommend an offshore tension leg platform (TLP) semi-active control system to lessen vibrations caused by various risks, such as the wind load and regular and irregular waves. State-of-the-art indicates that there has not been much study on semi-active management of offshore TLPs exposed to numerous hazards while taking into account system nonlinearities and employing a control method that is resilient to uncertainty. An augmented velocity–displacement-based groundhook (AVDB-GH) semi-active control scheme using magneto-rheological (MR) dampers, which is an improvement over the displacement-based groundhook (DB-GH) control algorithm, is proposed. The proposed controller uses a semi-active tuned mass damper (SATMD) consisting of a passive tuned mass damper (TMD) and two semi-active MR dampers as the control devices. Constrained nonlinear optimization is used to determine the SATMD's optimized parameters in order to produce the best control performance. A significant reduction in surge response of TLP is observed both in the time domain and the frequency domain. Compared to the SATMD using the usual DB-GH algorithm, the suggested control strategy more successfully decreases the key response variables—deck displacement, power spectral density, and acceleration. The effectiveness of the controller is better for regular waves than for irregular waves and wind forces. Because the performance of the controller is unaffected by changes in the mass and stiffness of the TLP, the controller can be regarded as robust.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Nordgren
,
R. P.
,
1987
, “
Analysis of High-Frequency Vibration of Tension Leg Platforms
,”
ASME J. Offshore Mech. Arct. Eng.
,
109
(
2
), pp.
119
125
.
2.
Chandrasekaran
,
S.
,
2014
,
Advanced Theory on Offshore Plant FEED Engineering
,
Changwon National University Press
,
Gyeongsangnam-do, South Kore
a, p.
237
.
3.
Ahsan
,
K.
, and
Yousun
,
L.
,
1993
, “
Wind-Excited Surge Response of Tension-Leg-Platform: Frequency-Domain Approach
,”
J. Eng. Mech.
,
119
(
1
), pp.
161
183
.
4.
Taflanidis
,
A. A.
,
Angelides
,
D. C.
, and
Scruggs
,
J. T.
,
2009
, “
Simulation-Based Robust Design of Mass Dampers for Response Mitigation of Tension Leg Platforms
,”
Eng. Struct.
,
31
(
4
), pp.
847
857
.
5.
Chandrasekaran
,
S.
,
Kumar
,
D.
, and
Ramanathan
,
R.
,
2013
, “
Dynamic Response of Tension Leg Platform With Tuned Mass Dampers
,”
J. Nav. Architect. Mar. Eng.
,
10
(
2
), pp.
149
157
.
6.
Park
,
S.
,
Lackner
,
M. A.
,
Whiter
,
J. C.
,
Tsouroukdissian
,
A. R.
, and
Cava
,
W. L.
,
2016
, “
An Investigation of Passive and Semi-active Tuned Mass Dampers for a Tension Leg Platform Floating Offshore Wind Turbine in ULS Conditions
,”
International Conference on Ocean, Offshore and Arctic Engineering, OMAE
,
Busan, South Korea
,
June 19–24
, pp.
1
10
.
7.
Qiong
,
W.
,
Zhao
,
X.
,
Zheng
,
R.
, and
Minagawa
,
K.
,
2016
, “
High Response Performance of a Tuned-Mass Damper for Vibration Suppression of Offshore Platform Under Earthquake Loads
,”
Shock Vib.
,
2016
(
25
), pp.
1
11
.
8.
Chandrasekaran
,
S.
,
Kumar
,
D.
, and
Ramanthan
,
R.
,
2017
, “
Response Control of Tension Leg Platform With Passive Damper: Experimental Investigations
,”
Ships Offshore Struct.
,
12
(
2
), pp.
171
181
.
9.
Jaksic
,
V.
,
Wright
,
C. S.
,
Afeef
,
C.
,
Ali
,
S. F.
,
Murphy
,
J.
, and
Pakrashi
,
V.
,
2015
, “
Performance of a Single Liquid Column Damper for the Control of Dynamic Responses of a Tension Leg Platform
,”
Damage Assess. Struct.
,
628
(
1
), pp.
1
8
.
10.
Jaksic
,
V.
,
Wright
,
C. S.
,
Murphy
,
J.
,
Afeef
,
C.
,
Ali
,
S. F.
,
Mandic
,
D. P.
, and
Pakrashi
,
V.
,
2016
, “
Dynamic Response Mitigation of Floating Wind Turbine Platforms Using Tuned Liquid Column Dampers
,”
Struct. Eng. Ocean Eng.
,
373
(
2035
), pp.
1
9
.
11.
Lee
,
H. H.
,
Wong
,
S.-H.
, and
Lee
,
R.-S.
,
2016
, “
Response Mitigation on the Offshore Floating Platform System With Tuned Liquid Column Damper
,”
Ocean Eng.
,
33
(
8–9
), pp.
1118
1142
.
12.
Lee
,
H. H.
, and
Juang
,
H. H.
,
2012
, “
Experimental Study on the Vibration Mitigation of Offshore Tension Leg Platform System With UWTLCD
,”
Smart Struct. Syst.
,
9
(
1
), pp.
71
104
.
13.
Zeng
,
X.
,
Yu
,
Y.
,
Zhang
,
L.
,
Liu
,
Q.
, and
Wu
,
H.
,
2015
, “
A New Energy-Absorbing Device for Motion Suppression in Deep-Sea Floating Platforms
,”
Energies
,
8
(
1
), pp.
111
132
.
14.
Chen
,
C. W.
,
2010
, “
Modeling and Fuzzy PDC Control and Its Application to an Oscillatory TLP Structure
,”
Math. Probl. Eng.
,
2010
(
2
), pp.
1
13
.
15.
Kiamini
,
S.
,
Jalilvand
,
A.
, and
Mobayen
,
S.
,
2018
, “
LMI-Based Robust Control of Floating Tension-Leg Platforms With Uncertainties and Time-Delays in Offshore Wind Turbines Via T-S Fuzzy Approach
,”
Ocean Eng.
,
154
, pp.
367
374
.
16.
Frahm
,
U.
,
1911
, “Device for Damping of Bodies,” US Patent No. 989, 958, 1911.
17.
Ormondroyd
,
J.
, and
Hartog
,
J. P. D.
,
1928
, “
The Theory of Dynamic Vibration Absorber
,”
Trans. Am. Soc. Mech. Eng.
,
50
(
7
), pp.
9
22
.
18.
Brock
,
J. E.
,
1946
, “
A Note on the Damped Vibration Absorber
,”
ASME J. Appl. Mech.
,
13
(
4
), pp.
A284
A284
.
19.
Hartog
,
J. P. D.
,
1947
,
Mechanical Vibrations
, 3rd ed.,
McGraw-Hill
,
New York
.
20.
Ahmad
,
S. K.
, and
Ahmad
,
S.
,
1999
, “
Active Control of Non-linearly Coupled TLP Response Under Wind and Wave Environments
,”
Comput. Struct.
,
72
(
6
), pp.
735
747
.
21.
Soong
,
T. T.
, and
Spencer
,
B. F.
,
2002
, “
Supplemental Energy Dissipation: State-of-the-Art and State-of-the-Practice
,”
Eng. Struct.
,
24
(
3
), pp.
243
259
.
22.
Alves
,
R. M.
,
Battista
,
R. C.
, and
Albrecht
,
C. H.
,
2003
, “
Active Control for Enhancing Fatigue Life of TLP Platforms and Tethers
,”
17th International Congress of Mechanical Engineering
,
Sao Paulo, Brazil
,
Nov. 10–14
.
23.
Ahmad
,
S. K.
,
2003
, “
Control of Dynamic Response of a Compliant Offshore Structure
,”
IMAC-XXI: A Conference & Exposition on Structural Dynamics
,
Kissimmee, FL
,
Feb. 3–6
.
24.
Stewart
,
G. M.
,
2011
, “
Load Reduction of Floating Wind Turbines Using Tuned Mass Dampers
,”
Master’s thesis
,
University of Massachusetts Amherst
,
Amherst
.
25.
Kandasamy
,
R.
,
Cui
,
F.
,
Townsend
,
N.
,
Foo
,
C. C.
,
Guo
,
J.
,
Shenoi
,
A.
, and
Xiong
,
Y.
,
2016
, “
A Review of Vibration Control Methods for Marine Offshore Structures
,”
Ocean Eng.
,
127
(
2016
), pp.
279
297
.
26.
Arrigan
,
J.
,
Huang
,
C.
,
Nagarajaiah
,
S.
, and
Basu
,
B.
,
2010
, “
Semi-active Algorithm for Edgewise Vibration Control in Floating Wind Turbine Blades
,”
Earth and Space 2010: Engineering, Science, Construction, and Operations in Challenging Environments
,
366
(
192
), pp.
2097
2110
.
27.
Arrigan
,
J.
,
Pakrashi
,
V.
,
Basu
,
B.
, and
Nagarajaiah
,
S.
,
2011
, “
Control of Flapwise Vibrations in Wind Turbine Blades Using Semi-active Tuned Mass Dampers
,”
Struct. Control Heal. Monit.
,
18
(
8
), pp.
840
851
.
28.
Van-Nguyen
,
D.
,
Basu
,
B.
, and
Nagarajaiah
,
S.
,
2016
, “
Semi-active Control of Vibrations of Spar Type Floating Offshore Wind Turbines
,”
Smart Struct. Syst.
,
18
(
4
), pp.
683
705
.
29.
Sun
,
C.
,
2018
, “
Mitigation of Offshore Wind Turbine Responses Under Wind and Wave Loading: Considering Soil Effects and Damage
,”
Struct. Control Heal. Monit.
,
25
(
3
), p.
e2117
.
30.
Sun
,
C.
,
2018
, “
Semi-Active Control of Monopile Offshore Wind Turbines Under Multi-hazards
,”
Mech. Syst. Signal Process.
,
99
, pp.
285
305
.
31.
Babaei
,
S.
,
Amirabadi
,
S.
, and
Taghikhany
,
T.
,
2016
, “
Assessment of Semi-active Tunes Mass Damper Application in Suppressing Seismic-Induced Vibration of an Existing Jacket PlatforM
,”
IJMT
,
6
, pp.
1
10
.
32.
Hemmati
,
A.
, and
Oterkus
,
E.
,
2018
, “
Semi-Active Structural Control of Offshore Wind Turbines Considering Damage Development
,”
J. Mar. Sci. Eng.
,
2018
(
6
), p.
102
, 1–22.
33.
Leng
,
D.
,
Yang
,
Y.
,
Xu
,
K.
,
Li
,
Y.
,
Liu
,
G.
,
Tian
,
X.
, and
Xie
,
Y.
,
2021
, “
Vibration Control of Offshore Wind Turbine Under Multiple Hazards Using Single Variable-Stiffness Tuned Mass Damper
,”
Ocean Eng.
,
236
(
2021
), p.
109473
, 1–16.
34.
Madhekar
,
S. N.
, and
Jangid
,
R. S.
,
2009
, “
Variable Dampers for Earthquake Protection of Benchmark Highway Bridges
,”
Smart Mater. Struct.
,
18
(
2009
), p.
115011
, 1–18.
35.
Kataria
,
N. P.
, and
Jangid
,
R. S.
,
2016
, “
Seismic Protection of the Horizontally Curved Bridge With Semi-Active Variable Stiffness Damper and Isolation System
,”
Adv. Struct. Eng.
,
19
(
7
), pp.
1
15
.
36.
Kim
,
G. C.
, and
Kang
,
J. W.
,
2011
, “
Seismic Response Control of Adjacent Building by Using Hybrid Control Algorithm of MR Damper
,”
Proc. Eng.
,
14
, pp.
1013
1020
.
37.
Koo
,
J.-H.
,
Ahmadian
,
M.
,
Setareh
,
M.
, and
Murray
,
T.
,
2004
, “
In Search of Suitable Control Methods for Semi-Active Tuned Vibration Absorbers
,”
J. Vib. Control
,
10
(
2
), pp.
163
174
.
38.
Kang
,
J.
,
Kim
,
H.-S.
, and
Lee
,
D.-G.
,
2011
, “
Mitigation of Wind Response of a Tall Building Using Semi-Active Tuned Mass Dampers
,”
Struct. Des. Tall Spec. Build.
,
20
(
5
), pp.
552
565
.
39.
Park
,
S.
,
Lackner
,
M. A.
,
Pourazarm
,
P.
,
Tsouroukdissian
,
A. R.
, and
Whiter
,
J. C.
,
2019
, “
An Investigation on the Impacts of Passive and Semiactive Structural Control on a Fixed Bottom and a Floating Offshore Wind Turbine
,”
Wind Energy
,
22
(
11
), pp.
1
21
.
40.
Chakrabarti
,
S. K.
,
1990
,
Nonlinear Methods in Offshore Engineering
,
Elsevier
,
Amsterdam
, pp.
1
543
.
41.
Tabeshpour
,
M. R.
, and
Shoghi
,
R.
,
2017
, “
Perturbation Nonlinear Response of Tension Leg Platform Under Regular Wave Excitation
,”
J. Mar. Sci. Technol.
,
23
(
1
), pp.
132
140
.
42.
Chandrasekaran
,
S.
, and
Koshti
,
Y.
,
2013
, “
Dynamic Analysis of a Tension Leg Platform Under Extreme Waves
,”
J. Nav. Architect. Mar. Eng.
,
10
(
1
), pp.
59
68
.
43.
Chakrabarti
,
S. K.
,
2005
,
Handbook of Offshore Engineering. Offshore Structure Analysis
, 1st ed., Vol.
1
,
Elsevier
,
New York
, p.
1
.
44.
Aliyu
,
B.
,
2014
, “
Concept of Hydrodynamic Load Analysis of Fixed Jacket Structure an Overview of Horizontal Cylinder
,”
Int. J. Eng. Res.
,
3
(
4
), pp.
196
200
.
45.
Setiyawan
,
S.
,
Salim
,
H.
,
Lukman
,
R. T.
,
Hadi
,
S.
, and
Hadihardaja
,
I. K.
,
2013
, “
Spectral Representation in Pacitan and Meulaboh Coast
,”
Int. J. Civil Environ. Eng.
,
3
(
1
), pp.
29
34
.
46.
Som
,
A.
, and
Das
,
D.
,
2018
, “
Seismic Vibration Control of Offshore Jacket Platforms Using Decentralized Sliding Mode Algorithm
,”
Ocean Eng.
,
152
, pp.
377
390
.
47.
Carter
,
D. J. T.
,
1982
, “Estimation of Wave Spectra From Wave Height and Period,” Institute of Oceanographic Sciences, Report No. 135.
48.
Viet
,
L. D.
,
Nghi
,
N. B.
,
Hieu
,
N. N.
,
Hung
,
D. T.
,
Linh
,
N. N.
, and
Hung
,
L. X.
,
2014
, “
On a Combination of Ground-Hook Controllers for Semi-active Tuned Mass Dampers
,”
J. Mech. Sci. Technol.
,
28
(
6
), pp.
2059
2064
.
49.
Spencer
,
B. F.
,
Dyke
,
S. J.
,
Sain
,
M. K.
, and
Carlson
,
J. D.
,
1996
, “
Phenomenological Model of a Magnetorheological Damper
,”
ASCE J. Eng. Mech.
,
123
(
3
), pp.
1
23
.
50.
Tabeshpour
,
M. R.
, and
Shoghi
,
R.
,
2014
, “
Nonlinear Dynamic Analysis of TLP Surge Motion Using Homotopy Perturbation Method
,”
Ships Offshore Struct.
,
9
(
6
), pp.
569
577
.
51.
Chatterjee
,
P. C.
,
Das
,
P. K.
, and
Faulkner
,
D.
,
1995
, “
A Hydro-structural Analysis Program for TLPs
,”
Ocean Eng.
,
24
(
4
), pp.
313
334
.
52.
Yang
,
G.
,
Spencer
,
B. F.
,
Carlson
,
J. D.
, and
Sain
,
M. K.
,
2002
, “
Large-Scale MR Fluid Dampers: Modeling and Dynamic Performance Considerations
,”
Eng. Struct.
,
24
(
3
), pp.
309
323
.
You do not currently have access to this content.