Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

This paper presents the application of a new multivariate extreme value model for the estimation of metocean variables. The model requires fewer assumptions about the forms of the marginal distributions and dependence structure compared to existing approaches, and provides a flexible and rigorous framework for modeling multivariate extremes. The method involves a transformation of variables to polar coordinates. The tail of the radial variable is then modeled using the generalized Pareto distribution, with parameters conditional on angle, providing a natural extension of univariate theory to multivariate problems. The resulting model is referred to as the semi-parametric angular-radial (SPAR) model. We consider the estimation of the joint distributions of (1) wave height and wave period, and (2) wave height and wind speed. We show that the SPAR model provides a good fit to the observations in terms of both the marginal distributions and dependence structures. The use of the SPAR model for estimating long-term extreme responses of offshore structures is discussed, using some simple response functions for floating structures and an offshore wind turbine with monopile foundation. We show that the SPAR model is able to accurately reproduce response distributions, and provides a realistic quantification of uncertainty.

References

1.
Winterstein
,
S. R.
,
Ude
,
T. C.
,
Cornell
,
C. A.
,
Bjerager
,
P.
, and
Haver
,
S.
,
1993
, “
Environmental Parameters for Extreme Response: Inverse FORM With Omission Factors
,”
6th International Conference on Structural Safety & Reliability (ICOSSAR)
,
Innsbruck, Austria
,
Aug. 9–13
.
2.
Derbanne
,
Q.
, and
de Hauteclocque
,
G.
,
2019
, “
A New Approach for Environmental Contour and Multivariate De-clustering
,”
38th International Conference on Ocean, Offshore and Arctic Engineering
,
Glasgow, Scotland
,
June 9–14
.
3.
Mackay
,
E.
, and
de Hauteclocque
,
G.
,
2023
, “
Model-Free Environmental Contours in Higher Dimensions
,”
Ocean Eng.
,
273
, p.
113959
.
4.
Naess
,
A.
, and
Moan
,
T
,
2013
,
Stochastic Dynamics of Marine Structures
,
Cambridge University Press
.
5.
Haselsteiner
,
A. F.
,
Coe
,
R. G.
,
Manuel
,
L.
,
Chai
,
W.
,
Leira
,
B.
,
Clarindo
,
G.
,
Soares
,
C. G.
, et al.,
2021
, “
A Benchmarking Exercise for Environmental Contours
,”
Ocean Eng.
,
236
, p.
109504
.
6.
de Hauteclocque
,
G.
,
Mackay
,
E.
, and
Vanem
,
E.
,
2022
, “
Quantitative Comparison of Environmental Contour Approaches
,”
Ocean Eng.
,
245
, p.
110374
.
7.
Ross
,
E.
,
Astrup
,
O. C.
,
Bitner-Gregersen
,
E.
,
Bunn
,
N.
,
Feld
,
G.
,
Gouldby
,
B.
,
Huseby
,
A.
,
Liu
,
Y.
,
Randell
,
D.
,
Vanem
,
E.
, and
Jonathan
,
P.
,
2020
, “
On Environmental Contours for Marine and Coastal Design
,”
Ocean Eng.
,
195
, p.
106194
.
8.
Haver
,
S.
,
1985
, “
Wave Climate Off Northern Norway
,”
Appl. Ocean Res.
,
7
(
2
), pp.
85
92
.
9.
Mathisen
,
J.
, and
Bitner-Gregersen
,
E.
,
1990
, “
Joint Distributions for Significant Wave Height and Wave Zero-Up-Crossing Period
,”
Appl. Ocean Res.
,
12
(
2
), pp.
93
103
.
10.
Nelsen
,
R. B
.,
2006
,
An Introduction to Copulas
,
Springer
.
11.
Joe
,
H.
,
2015
,
Dependence Modeling With Copulas
,
CRC Press.
12.
Silva-González
,
F.
,
Heredia-Zavoni
,
E.
, and
Montes-Iturrizaga
,
R.
,
2013
, “
Development of Environmental Contours Using Nataf Distribution Model
,”
Ocean Eng.
,
58
, pp.
27
34
.
13.
Montes-Iturrizaga
,
R.
, and
Heredia-Zavoni
,
E.
,
2015
, “
Environmental Contours Using Copulas
,”
Appl. Ocean Res.
,
52
, pp.
125
139
.
14.
Montes-Iturrizaga
,
R.
, and
Heredia-Zavoni
,
E.
,
2017
, “
Assessment of Uncertainty in Environmental Contours Due to Parametric Uncertainty in Models of the Dependence Structure Between Metocean Variables
,”
Appl. Ocean Res.
,
64
, pp.
86
104
.
15.
Jonathan
,
P.
, and
Ewans
,
K.
,
2013
, “
Statistical Modelling of Extreme Ocean Environments for Marine Design: A Review
,”
Ocean Eng.
,
62
, pp.
91
109
.
16.
Vanem
,
E.
,
Zhu
,
T.
, and
Babanin
,
A.
,
2022
, “
Statistical Modelling of the Ocean Environment—A Review of Recent Developments in Theory and Applications
,”
Marine Struct.
,
86
, p.
103297
.
17.
Heffernan
,
J. E.
, and
Tawn
,
J. A.
,
2004
, “
A Conditional Approach for Multivariate Extreme Values
,”
J. R. Stat. Soc. B
,
66
, pp.
497
546
.
18.
Gouldby
,
B.
,
Wyncoll
,
D.
,
Panzeri
,
M.
,
Franklin
,
M.
,
Hunt
,
T.
,
Hames
,
D.
,
Tozer
,
N.
,
Hawkes
,
P.
,
Dornbusch
,
U.
, and
Pullen
,
T.
,
2017
, “
Multivariate Extreme Value Modelling of Sea Conditions Around the Coast of England
,”
Proc. Inst. Civil Eng. Maritime Eng.
,
170
, pp.
3
20
.
19.
Ross
,
E.
,
Sam
,
S.
,
Randell
,
D.
,
Feld
,
G.
, and
Jonathan
,
P.
,
2018
, “
Estimating Surge in Extreme North Sea Storms
,”
Ocean Eng.
,
154
, pp.
430
444
.
20.
Liu
,
Y.
, and
Tawn
,
J. A.
,
2014
, “
Self-consistent Estimation of Conditional Multivariate Extreme Value Distributions
,”
J. Multivariate Anal.
,
127
, pp.
19
35
.
21.
Mackay
,
E.
, and
Jonathan
,
P.
,
2023
, “Modelling Multivariate Extremes Through Angular-Radial Decomposition of the Density Function,” arXiv, 10.
22.
Murphy-Barltrop
,
C.
,
Mackay
,
E.
, and
Jonathan
,
P.
,
2023
, “
Inference for Multivariate Extremes Via a Semi-parametric Angular-Radial Model
,”
arXiv
. https://arxiv.org/abs/2401.07259
23.
Coles
,
S.
,
2001
,
An Introduction to Statistical Modeling of Extreme Values
,
Springer
.
24.
Mackay
,
E.
,
2022
, “Improved Models for Multivariate Metocean Extremes,” Tech. Rep., Supergen ORE Hub, 1.
25.
Coles
,
S. G.
, and
Tawn
,
J. A.
,
1991
, “
Modelling Extreme Multivariate Events
,”
J. R. Stat. Soc. Ser. B (Methodol.)
,
53
(
2
), pp.
377
392
.
26.
Ledford
,
A. W.
, and
Tawn
,
J. A.
,
1997
, “
Modelling Dependence Within Joint Tail Regions
,”
J. R. Stat. Soc. Ser. B (Methodol.)
,
59
(
2
), pp.
475
499
.
27.
Wadsworth
,
J. L.
,
Tawn
,
J. A.
,
Davison
,
A. C.
, and
Elton
,
D. M.
,
2017
, “
Modelling Across Extremal Dependence Classes
,”
J. R. Stat. Soc. Ser. B Methodol.
,
79
(
1
), pp.
149
175
.
28.
Mackay
,
E.
, and
Haselsteiner
,
A. F.
,
2021
, “
Marginal and Total Exceedance Probabilities of Environmental Contours
,”
Marine Struct.
,
75
, p.
102863
.
29.
Huseby
,
A. B.
,
Vanem
,
E.
, and
Natvig
,
B.
,
2013
, “
A New Approach to Environmental Contours for Ocean Engineering Applications Based on Direct Monte Carlo Simulations
,”
Ocean Eng.
,
60
, pp.
125
135
.
30.
Haselsteiner
,
A. F.
,
Ohlendorf
,
J.-H.
,
Wosniok
,
W.
, and
Thoben
,
K.-D.
,
2017
, “
Deriving Environmental Contours From Highest Density Regions
,”
Coastal Eng.
,
123
, pp.
42
51
.
31.
Chai
,
W.
, and
Leira
,
B. J.
,
2018
, “
Environmental Contours Based on Inverse SORM
,”
Marine Struct.
,
60
, pp.
34
51
.
32.
Chavez-Demoulin
,
V.
, and
Davison
,
A. C.
,
2005
, “
Generalized Additive Modelling of Sample Extremes
,”
J. R. Stat. Soc. Ser. C: Appl. Stat.
,
54
(
1
), pp.
207
222
.
33.
Randell
,
D.
,
Turnbull
,
K.
,
Ewans
,
K.
, and
Jonathan
,
P.
,
2016
, “
Bayesian Inference for Nonstationary Marginal Extremes
,”
Environmetrics
,
27
(
7
), pp.
439
450
.
34.
Youngman
,
B. D.
,
2019
, “
Generalized Additive Models for Exceedances of High Thresholds With an Application to Return Level Estimation for U.S. Wind Gusts
,”
J. Am. Stat. Assoc.
,
114
(
528
), pp.
1865
1879
.
35.
Zanini
,
E.
,
Eastoe
,
E.
,
Jones
,
M.
,
Randell
,
D.
, and
Jonathan
,
P.
,
2020
, “
Flexible Covariate Representations for Extremes
,”
Environmetrics
,
31
, p.
e2624
.
36.
Barlow
,
A. M.
,
Mackay
,
E.
,
Eastoe
,
E.
, and
Jonathan
,
P.
,
2023
, “
A Penalised Piecewise-Linear Model for Non-stationary Extreme Value Analysis of Peaks Over Threshold
,”
Ocean Eng.
,
267
, p.
113265
.
37.
Wood
,
S. N.
,
2017
,
Generalized Additive Models: An Introduction With R
,
CRC Press
.
38.
Perperoglou
,
A.
,
Sauerbrei
,
W.
,
Abrahamowicz
,
M.
, and
Schmid
,
M.
,
2019
, “
A Review of Spline Function Procedures in R
,”
BMC Med. Res. Methodol.
,
19
(
1
), pp.
1
16
.
39.
Koenker
,
R.
,
2005
,
Quantile Regression
,
Cambridge University Press
.
40.
Northrop
,
P. J.
, and
Jonathan
,
P.
,
2011
, “
Threshold Modelling of Spatially Dependent Non-stationary Extremes With Application to Hurricane-Induced Wave Heights
,”
Environmetrics
,
22
(
7
), pp.
799
809
.
41.
Scarrott
,
C.
, and
MacDonald
,
A.
,
2012
, “
A Review of Extreme Value Threshold Estimation and Uncertainty Quantification
,”
REVSTAT-Stat. J.
,
10
(
1
), pp.
33
60
.
42.
Murphy
,
C.
,
Tawn
,
J. A.
, and
Varty
,
Z.
,
2023
, “
Automated Threshold Selection and Associated Inference Uncertainty for Univariate Extremes
,”
arXiv
.
43.
Groll
,
N.
, and
Weisse
,
R.
,
2017
, “
A Multi-decadal Wind-Wave Hindcast for the North Sea 1949–2014: CoastDat2
,”
Earth Syst. Sci. Data
,
9
(
2
), pp.
955
968
.
44.
Wada
,
R.
,
Rohmer
,
J.
,
Krien
,
Y.
, and
Jonathan
,
P.
,
2022
, “
Statistical Estimation of Spatial Wave Extremes for Tropical Cyclones From Small Data Samples: Validation of the STM-E Approach Using Long-Term Synthetic Cyclone Data for the Caribbean Sea
,”
Natl. Hazards Earth Syst. Sci.
,
22
(
2
), pp.
431
444
.
45.
Kunsch
,
H. R.
,
1989
, “
The Jackknife and the Bootstrap for General Stationary Observations
,”
Ann. Stat.
,
17
(
3
), pp.
1217
1241
.
46.
Haselsteiner
,
A. F.
,
Frieling
,
M.
,
Mackay
,
E.
,
Sander
,
A.
, and
Thoben
,
K.-D.
,
2022
, “
Long-Term Extreme Response of an Offshore Turbine: How Accurate Are Contour-Based Estimates?
,”
Renew. Energy
,
181
, pp.
945
965
.
47.
Randell
,
D.
,
Feld
,
G.
,
Ewans
,
K.
, and
Jonathan
,
P.
,
2015
, “
Distributions of Return Values for Ocean Wave Characteristics in the South China Sea Using Directional-Seasonal Extreme Value Analysis
,”
Environmetrics
,
26
, pp.
442
450
.
48.
Hansen
,
H. F.
,
Randell
,
D.
,
Zeeberg
,
A. R.
, and
Jonathan
,
P.
,
2020
, “
Directional–Seasonal Extreme Value Analysis of North Sea Storm Conditions
,”
Ocean Eng.
,
195
, p.
106665
.
49.
Mackay
,
E.
,
de Hauteclocque
,
G.
,
Vanem
,
E.
, and
Jonathan
,
P.
,
2021
, “
The Effect of Serial Correlation in Environmental Conditions on Estimates of Extreme Events
,”
Ocean Eng.
,
242
, p.
110092
.
50.
Tendijck
,
S.
,
Jonathan
,
P.
,
Randell
,
D.
, and
Tawn
,
J.
,
2023
, “
Temporal Evolution of the Extreme Excursions of Multivariate kth Order Markov Processes With Application to Oceanographic Data
,”
Environmetrics
.
You do not currently have access to this content.