Abstract

The oscillating water column (OWC) is an economical and feasible type of wave energy converter with minimal maintenance costs which have been widely investigated. In this study, the effect of lipwalls for a shore-front OWC is investigated using dual boundary equation method (DBEM) and computational fluid dynamics (CFD) approaches. The boundary value problem is solved using the DBEM method within the framework of linear water wave theory. Whilst in the CFD approach, the volume-of-fluid (VOF) approach is used for simulating the numerical wave tank, with appropriate boundary conditions and regular wave inlet. The DBEM approach is beneficial to understand the complex phenomena inside the chamber, viz., radiation conductance and susceptance. It is inferred that case-B (vertical + shoreward-slant lipwall) is found to exhibit better performance for a wider range of non-dimensional wave frequencies due to its wave trapping configuration where the position of the lower lipwall is orthogonal. The CFD studies provide interesting insights into the optimal damping ratio concerning wave amplification factor at higher relative water depths, power output, and correlation of phase difference. Besides, the study reveals that the pressure and wave elevation inside the chamber are associated with the inhalation and exhalation process of air is attributed to the lower half of the lipwall.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation
,” https://www.uncclearn.org/wp-content/uploads/library/ipcc15.pdf, Accessed October 9, 2023.
2.
Cruz
,
J.
,
2007
,
Ocean Wave Energy: Current Status and Future Prespectives
,
Springer Science & Business Media
.
3.
Falcao
,
A. F. O.
,
2010
, “
Wave Energy Utilization: A Review of the Technologies
,”
Renew. Sustain. Energy Rev.
,
14
(
3
), pp.
899
918
.
4.
Kadiri
,
M.
,
Ahmadian
,
R.
,
Bockelmann-Evans
,
B.
,
Rauen
,
W.
, and
Falconer
,
R.
,
2012
, “
A Review of the Potential Water Quality Impacts of Tidal Renewable Energy Systems
,”
Renew. Sustain. Energy Rev.
,
16
(
1
), pp.
329
341
.
5.
Bahaj
,
A. S.
,
2011
, “
Generating Electricity From the Oceans
,”
Renew. Sustain. Energy Rev.
,
15
(
7
), pp.
3399
3416
.
6.
Rusu
,
E.
,
2014
, “
Evaluation of the Wave Energy Conversion Efficiency in Various Coastal Environments
,”
Energies
,
7
(
6
), pp.
4002
4018
.
7.
Exclusive Economic Zone and Coastal Length of India
,” https://ncpor.res.in/pages/researchview/7, Accessed August 17, 2023.
9.
Evans
,
D.
,
1978
, “
The Oscillating Water Column Wave-Energy Device
,”
IMA J. Appl. Math.
,
22
(
4
), pp.
423
433
.
10.
Sarmento
,
A. J.
, and
Falcão
,
A. d. O.
,
1985
, “
Wave Generation by an Oscillating Surface-Pressure and Its Application in Wave-Energy Extraction
,”
J. Fluid Mech.
,
150
, pp.
467
485
.
11.
Evans
,
D.
, and
Porter
,
R.
,
1995
, “
Hydrodynamic Characteristics of an Oscillating Water Column Device
,”
Appl. Ocean Res.
,
17
(
3
), pp.
155
164
.
12.
Sannasiraj
,
S.
, and
Sundar
,
V.
,
2016
, “
Assessment of Wave Energy Potential and Its Harvesting Approach Along the Indian Coast
,”
Renew. Energy
,
99
, pp.
398
409
.
13.
Raju
,
V. S.
, and
Ravindran
,
M.
,
1997
, “
Wave Energy: Potential and Programme in India
,”
Renew. Energy
,
10
(
2–3
), pp.
339
345
.
14.
Heath
,
T.
,
2000
, “
The Development and Installation of the Limpet Wave Energy Converter
,”
Proceedings of the World Renewable Energy Congress VI, Elsevier
,
UK
, Elsevier, pp.
1619
1622
.
15.
Falcão
,
A. F.
, and
Henriques
,
J. C.
,
2016
, “
Oscillating-Water-Column Wave Energy Converters and Air Turbines: A Review
,”
Renew. Energy
,
85
, pp.
1391
1424
.
16.
Zhang
,
D.
,
Li
,
W.
, and
Lin
,
Y.
,
2009
, “
Wave Energy in China: Current Status and Perspectives
,”
Renew. Energy
,
34
(
10
), pp.
2089
2092
.
17.
Thiruvenkatasamy
,
K.
, and
Neelamani
,
S.
,
1997
, “
On the Efficiency of Wave Energy Caissons in Array
,”
Appl. Ocean Res.
,
19
(
1
), pp.
61
72
.
18.
Tseng
,
R.-S.
,
Wu
,
R.-H.
, and
Huang
,
C.-C.
,
2000
, “
Model Study of a Shoreline Wave-Power System
,”
Ocean Eng.
,
27
(
8
), pp.
801
821
.
19.
Morris-Thomas
,
M. T.
,
Irvin
,
R. J.
, and
Thiagarajan
,
K. P.
,
2007
, “
An Investigation into the Hydrodynamic Efficiency of an Oscillating Water Column
,”
ASME J. Offshore Mech. Arct. Eng.
,
129
(
4
), pp.
273
278
.
20.
Ashlin
,
S. J.
,
Sundar
,
V.
, and
Sannasiraj
,
S. A.
,
2016
, “
Effects of Bottom Profile of an Oscillating Water Column Device on Its Hydrodynamic Characteristics
,”
Renew. Energy
,
96
, pp.
341
353
.
21.
Zhang
,
Y.
,
Zou
,
Q.-P.
, and
Greaves
,
D.
,
2012
, “
Air–Water Two-Phase Flow Modelling of Hydrodynamic Performance of an Oscillating Water Column Device
,”
Renew. Energy
,
41
, pp.
159
170
.
22.
Iturrioz
,
A.
,
Guanche
,
R.
,
Lara
,
J.
,
Vidal
,
C.
, and
Losada
,
I.
,
2015
, “
Validation of OpenFOAM® for Oscillating Water Column Three-Dimensional Modeling
,”
Ocean Eng.
,
107
, pp.
222
236
.
23.
López
,
I.
,
Pereiras
,
B.
,
Castro
,
F.
, and
Iglesias
,
G.
,
2014
, “
Optimisation of Turbine-Induced Damping for an OWC Wave Energy Converter Using a RANS– VOF Numerical Model
,”
Appl. Energy
,
127
, pp.
105
114
.
24.
Kamath
,
A.
,
Bihs
,
H.
, and
Arntsen
,
Ø. A.
,
2015
, “
Numerical Investigations of the Hydrodynamics of an Oscillating Water Column Device
,”
Ocean Eng.
,
102
, pp.
40
50
.
25.
Kamath
,
A.
,
Bihs
,
H.
, and
Arntsen
,
Ø. A.
,
2015
, “
Numerical Modeling of Power Take-Off Damping in an Oscillating Water Column Device
,”
Int. J. Marine Energy
,
10
, pp.
1
16
.
26.
Mohapatra
,
P.
,
Vijay
,
K. G.
,
Bhattacharyya
,
A.
, and
Sahoo
,
T.
,
2021
, “
Performance of a Shore Fixed Oscillating Water Column Device for Different Bottom Slopes and Front Wall Drafts: A Study Based on Computational Fluid Dynamics and Biem
,”
ASME J. Offshore Mech. Arct. Eng.
,
143
(
3
), p.
032002
.
27.
Simonetti
,
I.
,
Cappietti
,
L.
,
El Safti
,
H.
,
Manfrida
,
G.
,
Matthies
,
H.
, and
Oumeraci
,
H.
,
2015
, “
The Use of OpenFOAM as a Virtual Laboratory to Simulate Oscillating Water Column Wave Energy Converters
,”
MARINE VI: Proceedings of the VI International Conference on Computational Methods in Marine Engineering, CIMNE
, pp.
153
164
.
28.
Elhanafi
,
A.
,
Fleming
,
A.
,
Macfarlane
,
G.
, and
Leong
,
Z.
,
2016
, “
Numerical Energy Balance Analysis for an Onshore Oscillating Water Column–Wave Energy Converter
,”
Energy
,
116
, pp.
539
557
.
29.
Elhanafi
,
A.
,
Fleming
,
A.
,
Macfarlane
,
G.
, and
Leong
,
Z.
,
2017
, “
Numerical Hydrodynamic Analysis of an Offshore Stationary–Floating Oscillating Water Column–Wave Energy Converter Using CFD
,”
Int. J. Naval Archit. Ocean Eng.
,
9
(
1
), pp.
77
99
.
30.
Mohapatra
,
P.
, and
Sahoo
,
T.
,
2020
, “
Hydrodynamic Performance Analysis of a Shore Fixed Oscillating Water Column Wave Energy Converter in the Presence of Bottom Variations
,”
Proc. Inst. Mech. Eng., Part M: J. Eng. Maritime Environ.
,
234
(
1
), pp.
37
47
.
31.
Rezanejad
,
K.
,
Bhattacharjee
,
J.
, and
Soares
,
C. G.
,
2013
, “
Stepped Sea Bottom Effects on the Efficiency of Nearshore Oscillating Water Column Device
,”
Ocean Eng.
,
70
, pp.
25
38
.
32.
Evans
,
D.
,
1982
, “
Wave-Power Absorption by Systems of Oscillating Surface Pressure Distributions
,”
J. Fluid. Mech.
,
114
(
1
), pp.
481
499
.
33.
Hong
,
H. K.
, and
Chen
,
J. T.
,
1988
, “
Derivations of Integral Equations of Elasticity
,”
J. Eng. Mech.
,
114
(
6
), pp.
1028
1044
.
34.
Chen
,
J. T.
,
Yueh
,
C. Y.
,
Chang
,
Y. L.
, and
Wen
,
C. C.
,
2017
, “
Why Dual Boundary Element Method Is Necessary?
,”
Eng. Anal. Boundary Elem.
,
76
, pp.
59
68
.
35.
Zhao
,
Y.
,
Liu
,
Y.
,
Li
,
H. J.
, and
Chang
,
A. T.
,
2020
, “
Iterative Dual BEM Solution for Water Wave Scattering by Breakwaters Having Perforated Thin Plates
,”
Eng. Anal. Boundary Elem.
,
120
, pp.
95
106
.
36.
CD-Adapco
,
2015
,
CD-Adapco, 2015, User Guide STAR-CCM Version 10.02
.
37.
Ning
,
D.-Z.
,
Shi
,
J.
,
Zou
,
Q.-P.
, and
Teng
,
B.
,
2015
, “
Investigation of Hydrodynamic Performance of an OWC (Oscillating Water Column) Wave Energy Device Using a Fully Nonlinear HOBEM (Higher-Order Boundary Element Method)
,”
Energy
,
83
, pp.
177
188
.
38.
Khan
,
M. B.
, and
Behera
,
H.
,
2021
, “
Impact of Sloping Porous Seabed on the Efficiency of an OWC Against Oblique Waves
,”
Renew. Energy
,
173
, pp.
1027
1039
.
You do not currently have access to this content.