Abstract

Unsteady Reynolds-averaged Navier–Stokes (RANS) method combined with Spalart–Allmaras turbulence model and dynamic mesh technology was used to investigate the impact of wake vortex on the vibration response of a cylinder. By analyzing the phase difference between the wake vortex force and the displacement under different mass parameters in flow-induced vibration (FIV), the study reveals that the influence of wake vortex on the cylinder varies significantly in different vibration branches. The wake vortex of the initial branch enhances the cylinder's vibration, whereas the wake vortices of the upper, lower, and desynchronized branches suppress the vibration. At the critical point between the initial branch and the upper branch of vortex-induced vibration (VIV), there is a 90 degree phase jump, and the instantaneous phase difference fluctuation between the wake vortex force and displacement of the VIV branch remains relatively constant. In the galloping branch, there are wake vortices in different directions that affect the cylinder's vibration every quarter of the vibration period, and the phase difference undergoes periodic large fluctuations (either in-phase or out-of-phase), with the result that the wake vortex force periodically promotes or restrains the cylinder's vibration, which can serve as a novel criterion for identifying the occurrence of galloping. Furthermore, when varying the mass parameters at a constant reduced velocity, the impact of the wake vortex in the initial branch is relatively insignificant. However, as the mass ratio increases in other vibration branches, the suppressive effect increases, and the wake vortex force can prevent VIV induced galloping phenomenon by affecting the vibration intensity.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Trim
,
D.
,
Braaten
,
H.
,
Lie
,
H.
, and
Tognarelli
,
M. A.
,
2005
, “
Experimental Investigation of Vortex-Induced Vibration of Long Marine Risers
,”
J. Fluids Struct.
,
21
(
3
), pp.
335
361
.
2.
Silva
,
D.
,
Luciano
,
D.
, and
Utzig
,
J.
,
2018
, “
Flow Patterns and Turbulence Effects in Large Cylinder Arrays
,”
Int. J. Heat Fluid Flow
,
69
(
1
), pp.
136
149
.
3.
Sun
,
H.
,
Li
,
H.
,
Yang
,
N.
,
Hou
,
G.
, and
Bernitsas
,
M. M.
,
2023
, “
Experimental and Numerical Study of the Shielding Effect of Two Tandem Rough Cylinders in Flow-Induce Oscillation
,”
Mar. Struct.
,
89
(
1
), p.
103374
.
4.
Lam
,
K.
, and
Lin
,
Y. F.
,
2008
, “
Large Eddy Simulation of Flow Around Wavy Cylinders at a Subcritical Reynolds Number
,”
Int. J. Heat Fluid Flow
,
29
(
4
), pp.
1071
1088
.
5.
Bernitsas
,
M.
,
Raghavan
,
K.
, and
Ben-Simon
,
Y.
,
2008
, “
VIVACE (Vortex Induced Vibration Aquatic Clean Energy): A New Concept in Generation of Clean and Renewable Energy From Fluid Flow
,”
ASME J. Offshore Mech. Arct. Eng.
,
130
(
4
), p.
041101
.
6.
Bernitsas
,
M. M.
,
Ben-Simon
,
Y.
, and
Raghavan
,
K.
,
2009
, “
The VIVACE Converter: Model Tests at High Damping and Reynolds Number Around 105
,”
ASME J. Offshore Mech. Arct. Eng.
,
131
(
1
), p.
011102
.
7.
Li
,
H.
,
Bernitsas
,
C. C.
,
Cong
,
P. N.
,
Bernitsas
,
M. M.
, and
Sun
,
H.
,
2024
, “
Experimental Investigation on Synergistic Flow-Induced Oscillation of Three Rough Tandem-Cylinders in Hydrokinetic Energy Conversion
,”
Appl. Energy
,
359
(
1
), p.
122587
.
8.
Wang
,
J. L.
,
Geng
,
L. F.
, and
Ding
,
L.
,
2020
, “
The State-of-the-Art Review on Energy Harvesting From Flow-Induced Vibrations
,”
Appl. Energy
,
267
(
1
), p.
114902
.
9.
Mazharmanesh
,
S.
,
Young
,
J.
,
Tian
,
F.
, and
Lai Joseph
,
C. S.
,
2020
, “
Energy Harvesting of Two Inverted Piezoelectric Flags in Tandem, Side-by-Side and Staggered Arrangements
,”
Int. J. Heat Fluid Flow
,
83
(
1
), p.
108589
.
10.
Khalak
,
A.
, and
Williamson
,
K.
,
1997
, “
Fluid Forces and Dynamics of a Hydroelastic Structure With Very Low Mass and Damping
,”
J. Fluids Struct.
,
11
(
8
), pp.
973
982
.
11.
Khalak
,
A.
, and
Williamson
,
K.
,
1999
, “
Motions, Forces and Mode Transitions in Vortex-Induced Vibrations at Low Mass-Damping
,”
J. Fluids Struct.
,
13
(
7–8
), pp.
813
851
.
12.
Williamson
,
K.
, and
Govardhan
,
R.
,
2004
, “
Vortex-Induced Vibrations
,”
Annu. Rev. Fluid Mech.
,
36
(
1
), pp.
413
455
.
13.
Bernitsas
,
M. M.
, and
Raghavan
,
K.
,
2009
, “Enhancement of Vortex Induced Forces and Motion Through Surface Roughness Control,” US20090250129.
14.
Chang
,
C. C.
,
2020
, “
Hydrokinetic Energy Harnessing by Enhancement of Flow Induced Motion Using Passive Turbulence Control
,”
Ph. D. Thesis
,
University of Michigan
,
Ann Arbor, MI
.
15.
Chang
,
C.
, and
Bernitsas
,
M. M.
,
2011
, “
Hydrokinetic Energy Harnessing Using the VIVACE Converter With Passive Turbulence Control
,”
30th International ASME Conference
,
Rotterdam, The Netherlands
,
June 19–24
.
16.
Chang
,
C. C.
,
Kumar
,
A.
, and
Bernitsas
,
M. M.
,
2011
, “
VIV and Galloping of Single Circular Cylinder With Surface Roughness at 3.0 × 104 ≤ Re ≤1.2 × 105
,”
Ocean Eng.
,
38
(
16
), pp.
1713
1732
.
17.
Lian
,
J. J.
,
Yan
,
X.
, and
Liu
,
F.
,
2017
, “
Experimental Investigation on Soft Galloping and Hard Galloping of Triangular Prisms
,”
Appl. Sci.
,
7
(
2
), pp.
198
210
.
18.
Mannini
,
C.
,
Marra
,
M.
, and
Massai
,
T.
,
2016
, “
Interference of Vortex-Induced Vibration and Transverse Galloping for a Rectangular Cylinder
,”
J. Fluids Struct.
,
66
(
1
), pp.
403
423
.
19.
Park
,
H.
,
Kumar
,
A.
, and
Bernitsas
,
M. M.
,
2013
, “
Enhancement of Flow-Induced Motion of Rigid Circular Cylinder on Springs by Localized Surface Roughness at 3 × 104 ≤ Re ≤ 1.2 × 105
,”
Ocean Eng.
,
72
(
1
), pp.
403
415
.
20.
Zhang
,
D.
,
Yang
,
H.
, and
Sui
,
Y.
,
2022
, “
Influence of System Parameters on the Coupling Between Vortex Induced Vibration and Galloping
,”
Ocean Eng.
,
266
(
1
), p.
112857
.
21.
Pigazzini
,
R.
,
Contento
,
G.
, and
Martini
,
S.
,
2019
, “
An Investigation on VIV of a Single 2D Elastically-Mounted Cylinder With Different Mass Ratios
,”
J. Mar. Sci. Technol.
,
24
(
4
), pp.
1078
1091
.
22.
Zhuang
,
K.
,
Zhang
,
C.
, and
Chang
,
R.
,
2019
, “
A Numerical Investigation of the Effects of Reynolds Number on Vortex-Induced Vibration of the Cylinders With Different Mass Ratios and Frequency Ratios
,”
Int. J. Nav. Architect. Ocean Eng.
,
11
(
2
), pp.
835
850
.
23.
Zhang
,
B. S.
,
Mao
,
Z. Y.
, and
Song
,
B. W.
,
2018
, “
Numerical Investigation on Effect of Damping-Ratio and Mass-Ratio on Energy Harnessing of a Square Cylinder in FIM
,”
Energy
,
144
(
1
), pp.
218
231
.
24.
Zhao
,
S. J.
,
Justin
,
L.
, and
David
,
L. J.
,
2019
, “
The Effect of Mass Ratio on the Structural Response of a Freely Vibrating Square Cylinder Oriented at Different Angles of Attack
,”
J. Fluids Struct.
,
86
(
1
), pp.
200
212
.
25.
Ji
,
C. N.
,
Zhang
,
D. H.
, and
Yao
,
Y.
,
2024
, “
Flow-Induced Vibration of a Square Cylinder in Low-Re Flows: Excitation Mechanisms at Different Mass Ratios
,”
Ocean Eng.
,
294
(
1
), p.
116723
.
26.
Jauvtis
,
N.
, and
Williamson
,
K. V.
,
2003
, “
Vortex-Induced Vibration of a Cylinder With Two Degrees of Freedom
,”
J. Fluids Struct.
,
17
(
7
), pp.
1035
1042
.
27.
Jauvtis
,
N.
, and
Williamson
,
C. H. K.
,
2004
, “
The Effect of Two Degrees of Freedom on Vortex-Induced Vibration at Low Mass and Damping
,”
J. Fluid Mech.
,
509
(
1
), pp.
23
62
.
28.
Wang
,
W.
,
Mao
,
Z.
, and
Song
,
B.
,
2021
, “
Numerical Investigation on Vortex-Induced Vibration Suppression of the Cactus-Inspired Cylinder With Some Ribs
,”
Phys. Fluids
,
33
(
3
), p.
037127
.
29.
Morse
,
L.
, and
Williamson
,
K.
,
2009
, “
Fluid Forcing, Wake Modes, and Transitions for a Cylinder Undergoing Controlled Oscillations
,”
J. Fluids Struct.
,
25
(
4
), pp.
697
712
.
30.
Williamson
,
K.
, and
Jauvtis
,
N.
,
2004
, “
A High-Amplitude 2T Mode of Vortex-Induced Vibration for a Light Body in Motion
,”
Eur. J. Mech. B Fluid
,
23
(
1
), pp.
107
114
.
31.
Bao
,
Y.
,
Lin
,
Y.
, and
Chen
,
W.
,
2022
, “
Numerical Investigation of Wake and Flow-Induced Vibrations of a Rotating Cylinder in Flow
,”
Ocean Eng.
,
262
(
1
), p.
112207
.
32.
Zhang
,
D.
,
Wang
,
W.
,
Sun
,
H.
, and
Bernitsas
,
M. M.
,
2021
, “
Influence of Turbulence Intensity on Vortex Pattern for a Rigid Cylinder With Turbulence Stimulation in Flow Induced Oscillations
,”
Ocean Eng.
,
237
(
1
), p.
109349
.
33.
Lighthill
,
J.
,
1986
, “
Fundamentals Concerning Wave Loading on Offshore Structures
,”
J. Fluid Mech.
,
173
(
1
), pp.
667
681
.
34.
Govardhan
,
R.
, and
Williamson
,
K.
,
2000
, “
Modes of Vortex Formation and Frequency Response of a Freely Vibrating Cylinder
,”
J. Fluid Mech.
,
420
(
1
), pp.
85
130
.
35.
Zhao
,
J.
,
Leontini
,
S.
, and
Jacono
,
L.
,
2014
, “
Chaotic Vortex Induced Vibrations
,”
Phys. Fluids
,
26
(
12
), p.
121702
.
36.
Konstantinidis
,
E.
,
Zhao
,
J.
, and
Leontini
,
J.
,
2020
, “
Phase Dynamics of Effective Drag and Lift Components in Vortex-Induced Vibration at Low Mass–Damping
,”
J. Fluids Struct.
,
96
(
1
), p.
103028
.
37.
Bernitsas
,
M. M.
,
Ofuegbe
,
J.
, and
Chen
,
J.
,
2019
, “
Eigen-Solution for Flow Induced Oscillations (VIV and Galloping) Revealed at the Fluid–Structure Interface
,”
38th International ASME Conference
,
Glasgow, UK
,
June 8–14
.
38.
Lv
,
Y. F.
,
Sun
,
L. P.
, and
Bernitsas
,
M. M.
,
2021
, “
A Comprehensive Review of Nonlinear Oscillators in Hydrokinetic Energy Harnessing Using Flow-Induced Vibrations
,”
Renew. Sustain. Energy Rev.
,
150
(
1
), p.
111388
.
39.
Wang
,
W.
,
Mao
,
Z.
, and
Song
,
B.
,
2021
, “
Suppression of Vortex-Induced Vibration of a Cactus-Inspired Cylinder Near a Free Surface
,”
Phys. Fluids
,
33
(
6
), p.
067103
.
40.
Sun
,
H.
,
Kim
,
E. S.
, and
Bernitsas
,
M. M.
,
2016
, “
Effect of Mass-Ratio, Damping, and Stiffness on Optimal Hydrokinetic Energy Conversion of a Single, Rough Cylinder in Flow Induced Motions
,”
Renew. Energy
,
99
(
1
), pp.
936
959
.
41.
Wang
,
W.
,
Song
,
B.
, and
Mao
,
Z.
,
2020
, “
Numerical Investigation on VIV Suppression of the Cylinder With the Bionic Surface Inspired by Giant Cactus
,”
Ocean Eng.
,
214
(
1
), p.
107775
.
42.
Spalart
,
P. R.
, and
Allmaras
,
S. R.
,
1994
, “
A One-Equation Turbulence Model for Aerodynamic Flows
,”
Recherche Aerospatiale
,
1
(
1
), pp.
5
21
.
43.
Ding
,
L.
,
Zhang
,
L.
, and
Bernitsas
,
M. M.
,
2016
, “
Numerical Simulation and Experimental Validation for Energy Harvesting of Single-Cylinder VIVACE Converter With Passive Turbulence Control
,”
Renew. Energy
,
85
(
1
), pp.
1246
1259
.
44.
Zhang
,
D. H.
,
Sun
,
H.
, and
Wang
,
W. H.
,
2018
, “
Rigid Cylinder With Asymmetric Roughness in Flow Induced Vibrations
,”
Ocean Eng.
,
150
(
1
), pp.
363
376
.
45.
Wang
,
J.
,
Zhao
,
W.
, and
Zhen
,
S.
,
2020
, “
Enhancing Vortex-Induced Vibrations of a Cylinder With Rod Attachments for Hydrokinetic Power Generation
,”
Mech. Syst. Signal Process.
,
145
(
1
), p.
106912
.
You do not currently have access to this content.