Abstract

A flexibly connected double-module floating structure can be used as the primary component unit of a large multi-module floating structure, revealing some basic principles regarding the interaction of multiple modules and connectors to the same extent. This study investigated the hydrodynamic characteristics of a double-module floating structure with cable–fender connectors and connector loads through an experimental model test. Due to the weak coupling strength of the connector, the motion response of each unit of the double-module floating structure mainly responds to the wave frequency, and the resonance frequency of the floating unit is close to that of the single floating module. The magnitude of the connector load is related to the relative pitch motion of the two modules. The increased stiffness of the connector can limit the pitch motion of the modules but can also lead to higher forces on the connector. The load acting on the fender in the cable–fender connector is strongly nonlinear, and the shear force on the fender is large; this may be the control load causing fender damage.

References

1.
Solomin
,
E.
,
Sirotkin
,
E.
,
Cuce
,
E.
,
Selvanathan
,
S. P.
, and
Kumarasamy
,
S.
,
2021
, “
Hybrid Floating Solar Plant Designs: A Review
,”
Energies
,
14
(
10
), p.
2751
.
2.
Flikkema
,
M.
, and
Waals
,
O.
,
2019
, “
Space@Sea the Floating Solution
,”
Front. Mar. Sci.
,
6
, p.
553
.
3.
Drummen
,
I.
, and
Olbert
,
G.
,
2021
, “
Conceptual Design of a Modular Floating Multi-Purpose Island
,”
Front. Mar. Sci.
,
8
, p.
86
.
4.
Gao
,
J.
,
Zang
,
J.
,
Chen
,
L.
,
Chen
,
Q.
,
Ding
,
H.
, and
Liu
,
Y.
,
2019
, “
On Hydrodynamic Characteristics of Gap Resonance Between Two Fixed Bodies in Close Proximity
,”
Ocean Eng.
,
173
, pp.
28
44
.
5.
Gao
,
J.
,
He
,
Z.
,
Huang
,
X.
,
Liu
,
Q.
,
Zang
,
J.
, and
Wang
,
G.
,
2021
, “
Effects of Free Heave Motion on Wave Resonance Inside a Narrow Gap Between Two Boxes Under Wave Actions
,”
Ocean Eng.
,
224
, p.
108753
.
6.
Jiang
,
D.
,
Tan
,
K. H.
,
Wang
,
C. M.
, and
Dai
,
J.
,
2021
, “
Research and Development in Connector Systems for Very Large Floating Structures
,”
Ocean Eng.
,
232
, p.
109150
.
7.
Wang
,
C. M.
,
Tay
,
Z. Y.
,
Takagi
,
K.
, and
Utsunomiya
,
T.
,
2010
, “
Literature Review of Methods for Mitigating Hydroelastic Response of VLFS Under Wave Action
,”
ASME Appl. Mech. Rev.
,
63
(
3
), p.
030802
.
8.
Ding
,
R.
,
Liu
,
C. R.
,
Zhang
,
H. C.
,
Xu
,
D. L.
,
Shi
,
Q. J.
,
Yan
,
D. L.
,
Yang
,
W. Y.
,
Chen
,
W. P.
, and
Wu
,
Y. S.
,
2020
, “
Experimental Investigation on Characteristic Change of a Scale-Extendable Chain-Type Floating Structure
,”
Ocean Eng.
,
213
, p.
107778
.
9.
Tajali
,
Z.
, and
Shafieefar
,
M.
,
2011
, “
Hydrodynamic Analysis of Multi-Body Floating Piers Under Wave Action
,”
Ocean Eng.
,
38
(
17
), pp.
1925
1933
.
10.
Ren
,
N.
,
Zhang
,
C.
,
Magee
,
A. R.
,
Hellan
,
Ø.
,
Dai
,
J.
, and
Ang
,
K. K.
,
2019
, “
Hydrodynamic Analysis of a Modular Multi-Purpose Floating Structure System With Different Outermost Connector Types
,”
Ocean Eng.
,
176
, pp.
158
168
.
11.
Shi
,
Q. J.
,
Xu
,
D. L.
,
Zhang
,
H. C.
,
Zhao
,
H.
, and
Wu
,
Y. S.
,
2018
, “
Optimized Stiffness Combination of a Flexible-Base Hinged Connector for Very Large Floating Structures
,”
Mar. Struct.
,
60
, pp.
151
164
.
12.
Shi
,
Q.
,
Xu
,
D.
,
Zhang
,
H.
,
Zhao
,
H.
,
Ding
,
J.
, and
Wu
,
Y.
,
2022
, “
A Face-Contact Connector for Modularized Floating Structures
,”
Mar. Struct.
,
82
, p.
103149
.
13.
Xia
,
S. Y.
,
Xu
,
D. L.
,
Zhang
,
H. C.
,
Qi
,
E. R.
,
Hu
,
J. J.
, and
Wu
,
Y. S.
,
2016
, “
On Retaining a Multi-Module Floating Structure in an Amplitude Death State
,”
Ocean Eng.
,
121
, pp.
134
142
.
14.
Zhao
,
H.
,
Xu
,
D.
,
Zhang
,
H.
,
Xia
,
S.
,
Shi
,
Q.
,
Ding
,
R.
, and
Wu
,
Y.
,
2019
, “
An Optimization Method for Stiffness Configuration of Flexible Connectors for Multi-Modular Floating Systems
,”
Ocean Eng.
,
181
, pp.
134
144
.
15.
Chen
,
S.
, and
Mahrenholtz
,
O.
,
1992
, “
Interaction of Water Waves and Floating Twin Cylinders in Beam Waves
,”
Appl. Ocean Res.
,
14
(
6
), pp.
371
379
.
16.
Shixiao
,
F.
,
Weicheng
,
C.
,
Xunjun
,
C.
, and
Cong
,
W.
,
2005
, “
Hydroelastic Analysis of a Nonlinearly Connected Floating Bridge Subjected to Moving Loads
,”
Mar. Struct.
,
18
(
1
), pp.
85
107
.
17.
Xu
,
D. L.
,
Zhang
,
H. C.
,
Lu
,
C.
,
Qi
,
E. R.
,
Hu
,
J. J.
, and
Wu
,
Y. S.
,
2014
, “
On Study of Nonlinear Network Dynamics of Flexibly Connected Multi-Module Very Large Floating Structures
,”
Vulnerability, Uncertainty, and Risk: Quantification, Mitigation, and Management
,
Liverpool, UK
,
July 7
, pp.
1805
1814
.
18.
Zhang
,
H. C.
,
Xu
,
D. L.
,
Xia
,
Y.
,
Lu
,
C.
,
Qi
,
E. R.
,
Tian
,
C.
, and
Wu
,
Y. S.
,
2015
, “
Nonlinear Network Modeling of Multi-Module Floating Structures With Arbitrary Flexible Connections
,”
J. Fluids Struct.
,
59
, pp.
270
284
.
19.
Waals
,
O. J.
,
Bunnik
,
T. H. J.
, and
Otto
,
W. J.
,
2018
, “
Model Tests and Numerical Analysis for a Floating Mega Island
,”
37th International Conference on Ocean, Offshore & Arctic Engineering (OMAE 2018)
,
Madrid, Spain
,
June 17–22
.
20.
Ikegami
,
K.
,
Ohta
,
M.
,
Matsuura
,
M.
,
Toshimitsu
,
K.
,
Nagaosa
,
S.
, and
Zhang
,
G.
,
2009
, “
Response Characteristics of a Trailer Type Multi-Connected Barge System in Waves
,”
27th International Conference on Offshore Mechanics and Arctic Engineering (OMAE2008)
,
Estoril, Portugal
,
June 15–20
, pp.
499
509
.
21.
Xu
,
D. L.
,
Zhang
,
H. C.
,
Lu
,
C.
,
Qi
,
E. R.
,
Tian
,
C.
, and
Wu
,
Y. S.
,
2014
, “
Analytical Criterion for Amplitude Death in Nonautonomous Systems With Piecewise Nonlinear Coupling
,”
Phys. Rev. E
,
89
(
4
), p.
042906
.
22.
Spouge
,
J. R.
,
1988
, “
Non-Linear Analysis of Large-Amplitude Rolling Experiments
,”
Int. Shipbuild. Prog.
,
35
(
403
), p.
54
.
23.
Simos
,
A. N.
,
Ruggeri
,
F.
,
Watai
,
R. A.
,
Souto-Iglesias
,
A.
, and
Lopez-Pavon
,
C.
,
2018
, “
Slow-Drift of a Floating Wind Turbine: An Assessment of Frequency-Domain Methods Based on Model Tests
,”
Renewable Energy
,
116
, pp.
133
154
.
You do not currently have access to this content.