Abstract

The coupling between fluid–solid interaction (FSI) and structural response is a crucial factor in understanding the resistance of sandwich structures to underwater blasts. In this study, we present a theoretical model that predicts the dynamic response of multilayer foam core sandwich beams subjected to underwater impulses. We carried out a time-scale intercoupling analysis by considering the compressible core in both incident impulse and structural response. In the incident impulse coupling phase, the one-dimensional fluid–structure interaction in terms of cavitation evolution is conducted to obtain the incident pressure profile. A four inter-stages response model is proposed for further analyzing the structural response coupling phase and its coupling with core strength. Explicit finite element calculations are performed to verify the theoretical results in terms of the velocity profile, transverse deflection, and core compression. The results suggest that the interaction between the four stages of the dynamic response is significantly influenced by the impulsive intensity and core strength, and the sandwich beam does not undergo all the four stages. The equivalent core strength used in the theoretical analysis is confirmed accurate to predict the impact resistance of the corresponding graded core sandwich beam, which is inferior to the sandwich beam with uniform cores, despite having the same areal mass.

References

1.
Fleck
,
N. A.
, and
Deshpande
,
V. S.
,
2004
, “
The Resistance of Clamped Sandwich Beams to Shock Loading
,”
ASME J. Appl. Mech.
,
71
(
3
), pp.
386
401
.
2.
Qiu
,
X.
,
Deshpande
,
V. S.
, and
Fleck
,
N. A.
,
2005
, “
Impulsive Loading of Clamped Monolithic and Sandwich Beams Over a Central Patch
,”
J. Mech. Phys. Solids
,
53
(
5
), pp.
1015
1046
.
3.
Huang
,
W.
,
Fan
,
Z.
,
Zhang
,
W.
,
Liu
,
J.
, and
Zhou
,
W.
,
2019
, “
Impulsive Response of Composite Sandwich Structure With Tetrahedral Truss Core
,”
Compos. Sci. Technol.
,
176
, pp.
17
28
.
4.
Gargano
,
A.
,
Das
,
R.
, and
Mouritz
,
A. P.
,
2022
, “
Comparative Experimental Study Into the Explosive Blast Response of Sandwich Structures Used in Naval Ships
,”
Compos. Commun.
,
30
, p.
101072
.
5.
Taylor
,
G.
,
1963
, “
The Pressure and Impulse of Submarine Explosion Waves on Plates
,” The Scientific Papers of GI Taylor, No.
3
, pp.
287
303
.
6.
Deshpande
,
V.
, and
Fleck
,
N.
,
2005
, “
One-Dimensional Response of Sandwich Plates to Underwater Shock Loading
,”
J. Mech. Phys. Solids
,
53
(
11
), pp.
2347
2383
.
7.
Radford
,
D. D.
,
Mcshane
,
G. J.
,
Deshpande
,
V. S.
, and
Fleck
,
N. A.
,
2006
, “
The Response of Clamped Sandwich Plates With Metallic Foam Cores to Simulated Blast Loading
,”
Int. J. Solids Struct.
,
43
(
7–8
), pp.
2243
2259
.
8.
Schiffer
,
A.
, and
Tagarielli
,
V. L.
,
2012
, “
The Response of Rigid Plates to Blast in Deep Water: Fluid-Structure Interaction Experiments
,”
Proc. R. Soc. A: Math. Phys. Eng. Sci.
,
468
(
2145
), pp.
2807
2828
.
9.
Liang
,
Y.
,
Spuskanyuk
,
A. V.
,
Flores
,
S. E.
,
Hayhurst
,
D. R.
,
Hutchinson
,
J. W.
,
Mcmeeking
,
R. M.
, and
Evans
,
A. G.
2007
, “
The Response of Metallic Sandwich Panels to Water Blast
,”
ASME J. Appl. Mech.
,
74
(
1
), pp.
81
99
.
10.
Kennard
,
E. H.
,
1943
, “
Cavitation in an Elastic Liquid
,”
Phys. Rev.
,
63
(
5–6
), pp.
172
181
.
11.
Schiffer
,
A.
, and
Tagarielli
,
V. L.
,
2017
, “
Underwater Blast Loading of Water-Backed Sandwich Plates With Elastic Cores: Theoretical Modelling and Simulations
,”
Int. J. Impact Eng.
,
102
, pp.
62
73
.
12.
Yin
,
C.
,
Jin
,
Z.
,
Chen
,
Y.
, and
Hua
,
H.
,
2016
, “
One-Dimensional Response of Single/Double-Layer Cellular Cladding to Water Blast
,”
Int. J. Impact Eng.
,
88
, pp.
125
138
.
13.
Yin
,
C.
,
Liu
,
J.
, and
Jin
,
Z.
,
2022
, “
Experimental and Numerical Study of the Near-Field Underwater Explosion of a Circular Plate Coated by Rigid Polyurethane Foam
,”
Ocean Eng.
,
252
, p.
111248
.
14.
Yin
,
C.
,
Jin
,
Z.
,
Chen
,
Y.
, and
Hua
,
H.
,
2016
, “
The Underwater Blast Resistance of Sacrificial Claddings With Stepwise Graded Cellular Cores
,”
ASME J. Offshore Mech. Arct. Eng.
,
139
(
2
), p.
021602
.
15.
Schiffer
,
A.
, and
Tagarielli
,
V. L.
,
2015
, “
The Response of Circular Composite Plates to Underwater Blast: Experiments and Modelling
,”
J. Fluids Struct.
,
52
, pp.
130
144
.
16.
Feng
,
H.
,
Huang
,
W.
,
Deng
,
S.
,
Yin
,
C.
,
Wang
,
P.
, and
Liu
,
J.
,
2022
, “
Dynamic Fluid–Structure Interaction of Graded Foam Core Sandwich Plates to Underwater Blast
,”
Int. J. Mech. Sci.
,
231
, p.
107557
.
17.
Huang
,
W.
,
Deng
,
S.
,
Zhou
,
W.
,
Liu
,
J.
,
Mu
,
Z.
, and
Zhang
,
W.
,
2021
, “
Anomalous Dynamic Response and Failure of Sandwich Structures Subjected to Underwater Impulsive Loads
,”
J. Sandwich Struct. Mater.
,
23
(
6
), pp.
2566
2585
.
18.
Symonds
,
P. S.
,
1953
, “
Large Plastic Deformations of Beams Under Blast Type Loading
,” No. 21.
19.
Jones
,
N.
,
2012
,
Structural Impact.
Cambridge University Press
,
Cambridge
.
20.
Qin
,
Q. H.
,
Wang
,
T. J.
, and
Zhao
,
S. Z.
,
2009
, “
Large Deflections of Metallic Sandwich and Monolithic Beams Under Locally Impulsive Loading
,”
Int. J. Mech. Sci.
,
51
(
11–12
), pp.
752
773
.
21.
Zhang
,
J.
,
Zhou
,
R.
,
Wang
,
M.
,
Qin
,
Q.
,
Yang
,
Y.
, and
Wang
,
T. J.
,
2018
, “
Dynamic Response of Double-Layer Rectangular Sandwich Plates With Metal Foam Cores Subjected to Blast Loading
,”
Int. J. Impact Eng.
,
122
, pp.
265
275
.
22.
Jiang
,
W. Z.
,
Liu
,
Y.
, and
Wang
,
B.
,
2017
, “
The Plastic Behavior of Sandwich Beams With Core Gradation
,”
Int. J. Mech. Sci.
,
130
, pp.
19
30
.
23.
Huang
,
W.
,
Zhang
,
W.
,
Li
,
D.
, and
Liu
,
J.
,
2019
, “
Analytical Model of the Dynamic Response of Clamped Metallic Sandwich Beam Subjected to Underwater Impulsive Loading
,”
Mar. Struct.
,
63
, pp.
333
350
.
24.
Tilbrook
,
M.
,
Deshpande
,
V.
, and
Fleck
,
N.
,
2006
, “
The Impulsive Response of Sandwich Beams: Analytical and Numerical Investigation of Regimes of Behaviour
,”
J. Mech. Phys. Solids
,
54
(
11
), pp.
2242
2280
.
25.
Tilbrook
,
M. T.
,
Deshpande
,
V. S.
, and
Fleck
,
N. A.
,
2009
, “
Underwater Blast Loading of Sandwich Beams: Regimes of Behaviour
,”
Int. J. Solids Struct.
,
46
(
17
), pp.
3209
3221
.
26.
Xiang
,
C.
,
Qin
,
Q.
,
Wang
,
M.
,
Yu
,
X.
,
Chen
,
S.
,
Zhang
,
W.
,
Xia
,
Y.
,
Zhang
,
J.
,
Zhao
,
J
, and
Wang
,
T.
,
2019
, “
Low-Velocity Impact Response of Sandwich Beams With a Metal Foam Core: Experimental and Theoretical Investigations
,”
Int. J. Impact Eng.
,
130
, pp.
172
183
.
27.
Huang
,
W.
,
Zhang
,
W.
,
Li
,
D.
,
Ye
,
N.
,
Xie
,
W.
, and
Ren
,
P.
,
2016
, “
Dynamic Failure of Honeycomb-Core Sandwich Structures Subjected to Underwater Impulsive Loads
,”
Eur. J. Mech. A/Solids
,
60
, pp.
39
51
.
28.
Qu
,
T.
,
Avachat
,
S.
, and
Zhou
,
M.
,
2017
, “
Response of Cylindrical Composite Structures Subjected to Underwater Impulsive Loading: Experimentations and Computations
,”
ASME J. Eng. Mater. Technol.
,
139
(
2
), p.
021020
.
29.
Huang
,
W.
,
Zhang
,
W.
,
Chen
,
T.
,
Jiang
,
X.
, and
Liu
,
J.
,
2018
, “
Dynamic Response of Circular Composite Laminates Subjected to Underwater Impulsive Loading
,”
Composites Part A
,
109
, pp.
63
74
.
30.
Huang
,
W.
,
Zhang
,
W.
,
Huang
,
X.
,
Jiang
,
X.
,
Li
,
Y.
, and
Zhang
,
L.
,
2017
, “
Dynamic Response of Aluminum Corrugated Sandwich Subjected to Underwater Impulsive Loading: Experiment and Numerical Modeling
,”
Int. J. Impact Eng.
,
109
, pp.
78
91
.
31.
Yu
,
T. X.
, and
Stronge
,
W. J.
,
1990
, “
Large Deflections of a Rigid-Plastic Beam-on-Foundation From Impact
,”
Int. J. Impact Eng.
,
9
(
1
), pp.
115
126
.
You do not currently have access to this content.