Abstract

The marginal ice zone (MIZ) is the area between sea ice and open water, the structure of which is mainly determined by wave and ice interactions. Thus mastering the characteristics of MIZ is of great significance to the Arctic routes opening and the natural resources development. In this paper, the hydroelastic response of ice floes in waves is studied, a three-dimensional numerical wave tank is established based on the computational fluid dynamics technology. The finite volume method and finite element method are respectively utilized for the discrete fluid domain and ice domain. A mapping interface at the junction of the fluid and ice floes domains is created to perform data mapping by the shape function interpolation method and the least square method. This work presents a series of numerical simulations to study the fluid–solid interaction of waves and ice floes. Under the given incident wave parameters, the vertical bending deformation of ice floes with different shapes under the excitation of waves, the effect of ice floes' deformation on the wave field are studied, and the effect of wave overwash on the transmitted wave field is emphasized. Results show that the shape of the ice floes significantly affects its elastic deformation and scattered wave field, and the wave overwash phenomenon attenuates the scattering wave.

References

1.
Stroeve
,
J. C.
,
Kattsov
,
V.
,
Barrett
,
A.
,
Serreze
,
M.
,
Pavlova
,
T.
,
Holland
,
M.
, and
Meier
,
W. N.
,
2012
, “
Trends in Arctic Sea Ice Extent From CMIP5, CMIP3 and Observations
,”
Geophys. Res. Lett.
,
39
(
16
), p.
L16502
.
2.
Wadhams
,
P.
,
2017
,
A Farewell to Ice: A Report From the Arctic
,
Oxford University Press
,
New York
.
3.
Smith
,
L. C.
, and
Stephenson
,
S. R.
,
2013
, “
New Trans-Arctic Shipping Routes Navigable by Midcentury
,”
J. Proc. Natl. Acad. Sci.
,
110
(
13
), pp.
E1191
E1195
.
4.
Jiang
,
Z.
,
Li
,
F.
,
Mikkola
,
T.
,
Kujala
,
P.
, and
Hirdaris
,
S.
,
2023
, “
A Boundary Element Method for the Prediction of Hydrodynamic Ship–Ice–Wave Interactions in Regular Waves
,”
ASME J. Offshore Mech. Arct. Eng.
,
145
(
6
), p.
061601
.
5.
Toffoli
,
A.
,
Alberello
,
A.
,
Bennetts
,
L. G.
,
Meylan
,
M. H.
,
Cavaliere
,
C.
, and
Babanin
,
A.
,
2014
, “
An Experimental Model of Reflection and Transmission of Ocean Waves by an Ice Floe
,”
J. Phys.
,
472
(
4
), pp.
63
76
.
6.
Dolatshah
,
A.
,
Nelli
,
F.
,
Bennetts
,
L. G.
,
Alberello
,
A.
,
Meylan
,
M. H.
,
Monty
,
J. P.
, and
Toffoli
,
A.
,
2018
, “
Letter: Hydroelastic Interactions Between Water Waves and Floating Freshwater Ice
,”
J. Phys. Fluids
,
30
(
9
), p.
091702
.
7.
Yiew
,
L. J.
,
Parra
,
S. M.
,
Wang
,
D.
,
Sree
,
D. K. K.
,
Babanin
,
A. V.
, and
Law
,
A. W.-K.
,
2019
, “
Wave Attenuation and Dispersion Due to Floating Ice Covers
,”
J. Appl. Ocean Res.
,
87
, pp.
256
263
.
8.
Meylan
,
M. H.
,
Bennetts
,
L. G.
,
Cavaliere
,
C.
,
Alberello
,
A.
, and
Toffoli
,
A.
,
2015
, “
Experimental and Theoretical Models of Wave-Induced Flexure of a Sea Ice Floe
,”
J. Phys. Fluids
,
27
(
4
), p.
041704
.
9.
Sree
,
D. K. K.
,
Law
,
A. W. K.
, and
Shen
,
H. H.
,
2017
, “
An Experimental Study on the Interactions Between Surface Waves and Floating Viscoelastic Covers
,”
J. Wave Motion.
,
70
, pp.
195
208
.
10.
Bennetts
,
L. G.
, and
Williams
,
T. D.
,
2012
, “
Wave Scattering by Ice Floes and Polynyas of Arbitrary Shape
,”
J. Fluid Mech.
,
662
, pp.
5
35
.
11.
Meylan
,
M. H.
,
2002
, “
Wave Response of an Ice Floe of Arbitrary Geometry
,”
J. Geophys. Res.: Oceans
,
107
(
C1
), pp.
5-1
5-11
.
12.
Bennetts
,
L. G.
, and
Squire
,
V. A.
,
2012
, “
On the Calculation of an Attenuation Coefficient for Transects of Ice-Covered Oceans
,”
Proc. R. Soc. A
,
468
(
2137
), pp.
136
162
.
13.
Bennetts
,
L. G.
,
Biggs
,
N. R. T.
, and
Porter
,
D.
,
2009
, “
Wave Scattering by an Axisymmetric Ice Floe of Varying Thickness
,”
IMA J. Appl. Math.
,
74
(
2
), pp.
273
295
.
14.
Smith
,
M. J. A.
, and
Meylan
,
M. H.
,
2011
, “
Wave Scattering by an Ice Floe of Variable Thickness
,”
Cold Reg. Sci. Technol.
,
67
(
1–2
), pp.
24
30
.
15.
Xin
,
Z.
, and
Shen
,
H. H.
,
2013
, “
Ocean Wave Transmission and Reflection Between Two Connecting Viscoelastic Ice Covers: An Approximate Solution
,”
J. Ocean Modell.
,
71
(
7
), pp.
102
113
.
16.
Cheng
,
S.
,
Tsarau
,
A.
,
Evers
,
K. U.
, and
Shen
,
H.
,
2019
, “
Floe Size Effect on Gravity Wave Propagation Through Ice Covers
,”
J. Geophys. Res. Oceans
,
124
(
1
), pp.
320
334
.
17.
Ren
,
K.
,
Wu
,
G. X.
, and
Thomas
,
G. A.
,
2016
, “
Wave Excited Motion of a Body Floating on Water Confined Between Two Semi-Infinite Ice Sheets
,”
J. Phys. Fluids
,
28
(
12
), p.
127101
.
18.
Li
,
Z. F.
,
Wu
,
G. X.
, and
Ji
,
C. Y.
,
2018
, “
Interaction of Wave With a Body Submerged Below an Ice Sheet With Multiple Arbitrarily Spaced Cracks
,”
J. Phys. Fluids
,
30
(
5
), p.
057107
.
19.
Li
,
Z. F.
, and
Wu
,
G. X.
,
2021
, “
Hydrodynamic Force on a Ship Floating on the Water Surface Near a Semi-Infinite Ice Sheet
,”
J. Phys. Fluids
,
33
(
12
), p.
127101
.
20.
Xue
,
Y. Z.
,
Zeng
,
L. D.
,
Ni
,
B. Y.
,
Korobkin
,
A. A.
, and
Khabakhpasheva
,
T. I.
,
2021
, “
Hydroelastic Response of an Ice Sheet With a Lead to a Moving Load
,”
J. Phys. Fluids
,
33
(
3
), p.
037109
.
21.
Khabakhpasheva
,
T. I.
, and
Korobkin
,
A. A.
,
2021
, “
Blunt Body Impact Onto Viscoelastic Floating Ice Plate With a Soft Layer on Its Upper Surface
,”
J. Phys. Fluids
,
33
(
6
), p.
062105
.
22.
Tavakoli
,
S.
,
Mikkola
,
T.
, and
Hirdaris
,
S.
,
2023
, “
A Fluid–Solid Momentum Exchange Method for the Prediction of Hydroelastic Responses of Flexible Water Entry Problems
,”
J. Fluid Mech.
,
965
, p.
A19
.
23.
Skene
,
D. M.
,
Bennetts
,
L. G.
,
Meylan
,
M. H.
, and
Toffoli
,
A.
,
2015
, “
Modelling Water Wave Overwash of a Thin Floating Plate
,”
J. Fluid Mech.
,
777
, p.
R3
.
24.
Zhang
,
N. B.
,
Zheng
,
X.
, and
Ma
,
Q. W.
,
2019
, “
Study on Wave-Induced Kinematic Responses and Flexures of Ice Floe by Smoothed Particle Hydrodynamics
,”
J. Comput. Fluids
,
189
, pp.
46
59
.
25.
Tavakoli
,
S.
,
Huang
,
L.
,
Azhari
,
F.
, and
Babanin
,
A. V.
,
2022
, “
Viscoelastic Wave–Ice Interactions: A Computational Fluid–Solid Dynamic Approach
,”
J. Mar. Sci. Eng.
,
10
(
9
), p.
1220
.
26.
Huang
,
L.
,
Ren
,
K.
,
Li
,
M.
,
Tuković
,
Ž.
,
Cardiff
,
P.
, and
Thomas
,
G.
,
2019
, “
Fluid-Structure Interaction of a Large Ice Sheet in Waves
,”
J. Ocean Eng.
,
182
, pp.
102
111
.
27.
Tuković
,
Ž
,
Karač
,
A.
,
Cardiff
,
P.
,
Jasak
,
H.
, and
Ivanković
,
A.
,
2018
, “
OpenFOAM Finite Volume Solver for Fluid-Solid Interaction
,”
J. Trans. FAMENA
,
42
(3), pp.
1
31
.
28.
Cardiff
,
P.
,
Karač
,
A.
,
De Jaeger
,
P.
,
Jasak
,
H.
,
Nagy
,
J.
,
Ivanković
,
A.
, and
Tuković
,
Ž.
,
2018
, “
An Open-Source Finite Volume Toolbox for Solid Mechanics and Fluid-Solid Interaction Simulations
,”
J. Computer Physics Communications
, pp.
1
45
.
29.
Huang
,
L.
,
Bennetts
,
L.
,
Cardiff
,
P.
,
Jasak
,
H. R.
,
Tukovic
,
Z. E.
, and
Thomas
,
G. I.
,
2020
, “
The Implication of Elastic Deformation in Wave-Ice Interaction
,”
Proceedings of the 15th OpenFOAM Workshop
,
Arligton, VA
,
June 22–25
.
30.
Nishimura
,
H.
,
Isobe
,
M.
, and
Horikawa
,
K.
,
1978
, “
Higher Order Solutions of the Stokes and the Cnoidal Waves
,”
J. Fac. Eng. Univ. Tokyo, Ser. B.
,
34
(
2
), pp.
267
293
. https://jglobal.jst.go.jp/en/detail?JGLOBAL_ID=201002009462665580
31.
Yan
,
D.
,
Mikkola
,
T.
,
Kujala
,
P.
, and
Hirdaris
,
S.
,
2023
, “
Hydroelastic Analysis of Slamming Induced Impact on Stiff and Flexible Structures by Two-Way CFD-FEA Coupling
,”
J. Ships Offshore Struct.
,
18
(
9
), pp.
1300
1312
.
32.
Zienkiewicz
,
O. C.
,
Taylor
,
R. L.
, and
Zhu
,
J. Z.
,
2013
,
The Finite Element Method: Its Basis and Fundamentals
,
Butterworth-Heinemann
,
Kidlington, Oxford, UK
.
33.
Dettmer
,
W.
, and
Perić
,
D.
,
2006
, “
A Computational Framework for Fluid–Structure Interaction: Finite Element Formulation and Applications
,”
Comput. Methods Appl. Mech. Eng.
,
195
(
41–43
), pp.
5754
5779
.
34.
Bakica
,
A.
,
Malenica
,
S.
, and
Vladimir
,
N.
,
2020
, “
Hydro-Structure Coupling of CFD and FEM—Quasi-Static Approach
,”
J. Ocean Eng.
,
217
, p.
108118
.
35.
Bakica
,
A.
,
Malenica
,
S.
,
Vladimir
,
N.
, and
Senjanović
,
I.
,
2022
, “
Hydroelastic Analysis of Pre-Swirl Stator
,”
J. Mar. Struct.
,
85
, p.
103267
.
36.
Thomson
,
J.
,
Ackley
,
S.
,
Girard-Ardhuin
,
F.
,
Ardhuin
,
F.
,
Babanin
,
A.
,
Boutin
,
G.
,
Brozena
,
J.
, et al
,
2018
, “
Overview of the Arctic Sea State and Boundary Layer Physics Program
,”
J. Geophys. Res.: Oceans
,
123
(
12
), pp.
8674
8687
.
You do not currently have access to this content.