Abstract

The present study outlines the hydrodynamic performance of stratified pile-rock breakwaters (SPRBs) in series using the analytical calculation under the framework of linearized potential flow theory. The rubble mounds are separated into two porous layers (surface and bottom layers) and tightly packed within the space available between the seaside and leeside vertical piles. The SPRB is installed on the elevated bed, and it is considered as a bottom rigid layer. The newly proposed breakwater is titled as stratified pile-rock breakwater and vertical piles are suggested to minimize the unwanted displacements of rubble mounds from frequent failures due to the incident wave stroke. The analytical model is developed based on the method of matched eigenfunction expansions (MMEEs) along with suitable boundary conditions to assess the hydrodynamic performance of the SPRB. The study results are compared with the literature based on experimental and analytical methods for specific conditions. The wave reflection, transmission, and energy damping by a series of SPRBs are reported for changes in incident wave properties and breakwater physical properties. The effect of layer porosity, angle of contact, free spacing, and number of breakwaters on the hydrodynamic coefficients is reported. The study suggested that a pair of SPRBs having 80% and 40% porosities for surface and bottom layers, with clear spacing, varied within 1 ≤ w/h1 ≤ 2, and the angle of contact varied within 30 deg ≤ θ ≤ 45 deg to achieve a 90% wave-damping when the relative wavenumber is k10h1 = 1.

References

1.
Liu
,
Y.
,
Li
,
Y. C.
, and
Teng
,
B.
,
2016
, “
Interaction Between Oblique Waves and Perforated Caisson Breakwaters With Perforated Partition Walls
,”
Eur. J. Mech. B Fluids
,
56
, pp.
143
155
.
2.
Kumaran
,
V.
,
Manu
, and
Rao
,
S.
,
2022
, “
Assessment of Dynamic Pressure and Wave Forces on Vertical-Caisson Type Breakwater
,”
Mar. Georesour. Geotechnol.
,
40
(
2
), pp.
147
158
.
3.
Wang
,
Y.
,
Wang
,
G.
, and
Li
,
G.
,
2006
, “
Experimental Study on the Performance of the Multiple-Layer Breakwater
,”
Ocean Eng.
,
33
(
13
), pp.
1829
1839
.
4.
Liu
,
Y.
, and
Li
,
H. J.
,
2014
, “
Analysis of Wave Performance Through Pile-Rock Breakwaters
,”
Proc. Inst. Mech. Eng. Part M: J. Eng. Maritime Environ.
,
228
(
3
), pp.
284
292
.
5.
Le Xuan
,
T.
,
Nguyen Cong
,
P.
,
Vo Quoc
,
T.
,
Tran
,
Q. Q.
,
Wright
,
D. P.
, and
Tran Anh
,
D.
,
2022
, “
Multi-scale Modelling for Hydrodynamic and Morphological Changes of Breakwater Coastal Mekong Delta in Vietnam
,”
J. Coast. Conserv.
,
26
(
3
), p.
18
.
6.
Nguyen
,
N. M.
,
Do Van
,
D.
,
Le
,
D. T.
,
Pham
,
N. T.
,
Nguyen
,
Q.
,
Tran
,
B.
, and
Anh
,
D. T.
,
2022
, “
Wave Reduction Efficiency for Three Classes of Breakwaters on the Coastal Mekong Delta
,”
Appl. Ocean Res.
,
129
, p.
103362
.
7.
Sollitt
,
C. K.
, and
Cross
,
R. H.
,
1972
, “
Wave Transmission Through Permeable Breakwaters
,”
Coastal Engineering Proceeding
,
Vancouver, British Columbia, Canada
,
July 10–14
, pp.
1827
1846
.
8.
Dalrymple
,
R. A.
,
Losada
,
M. A.
, and
Martin
,
P. A.
,
1991
, “
Reflection and Transmission From Porous Structures Under Oblique Wave Attack
,”
J. Fluid Mech.
,
224
, pp.
625
644
.
9.
Dattatri
,
J.
,
Raman
,
H.
, and
Shankar
,
N. J.
,
1978
, “
Performance Characteristics of Submerged Breakwaters
,”
Coastal Engineering Proceeding
,
Hamburg, Germany
,
Aug. 27–Sept. 3
, pp.
2153
2171
.
10.
Sulisz
,
W.
,
1985
, “
Wave Reflection and Transmission at Permeable Breakwaters of Arbitrary Cross-Section
,”
Coast. Eng.
,
9
(
4
), pp.
371
386
.
11.
Madsen
,
P. A.
,
1983
, “
Wave Reflection From a Vertical Permeable Wave Absorber
,”
Coast. Eng.
,
7
(
4
), pp.
381
396
.
12.
Mallayachari
,
V.
, and
Sundar
,
V.
,
1994
, “
Reflection Characteristics of Permeable Seawalls
,”
Coast. Eng.
,
23
(
1–2
), pp.
135
150
.
13.
Zhu
,
S.
, and
Chwang
,
A. T.
,
2001
, “
Analytical Study of Porous Wave Absorber
,”
J. Eng. Mech.
,
127
(
4
), pp.
326
332
.
14.
Isaacson
,
M.
,
Baldwin
,
J.
,
Premasiri
,
S.
, and
Yang
,
G.
,
1999
, “
Wave Interactions With Double Slotted Barriers
,”
Appl. Ocean Res.
,
21
(
2
), pp.
81
91
.
15.
Sahoo
,
T.
,
Lee
,
M. M.
, and
Chwang
,
A. T.
,
2000
, “
Trapping and Generation of Waves by Vertical Porous Structures
,”
J. Eng. Mech.
,
126
(
10
), pp.
1074
1082
.
16.
Le Méhauté
,
B.
,
1972
, “
Progressive Wave Absorber
,”
J. Hydraul. Res.
,
10
(
2
), pp.
153
169
.
17.
Yu
,
X. P.
, and
Chwang
,
A. T.
,
1994
, “
Wave Motion Through Porous Structures
,”
J. Eng. Mech.
,
120
(
5
), pp.
989
1008
.
18.
Twu
,
S. W.
,
Liu
,
C. C.
, and
Hsu
,
W. H.
,
2001
, “
Wave Damping Characteristics of Deeply Submerged Breakwaters
,”
J. Waterw. Port Coast. Ocean Eng.
,
127
(
2
), pp.
97
105
.
19.
Liu
,
Y.
,
Li
,
Y.
, and
Teng
,
B.
,
2007
, “
Wave Interaction With a New Type Perforated Breakwater
,”
Acta Mech. Sin.
,
23
(
4
), pp.
351
358
.
20.
Hongjie
,
L.
,
Yong
,
L.
, and
Yucheng
,
L.
,
2009
, “
The Theoretical Study on Diagonal Wave Interaction With Perforated-Wall Breakwater With Rock Fill
,”
Acta Oceanol. Sin.
,
6
, pp.
103
110
.
21.
Venkateswarlu
,
V.
, and
Karmakar
,
D.
,
2020
, “
Gravity Wave Trapping by Series of Horizontally Stratified Wave Absorbers Away From Seawall
,”
ASME J. Offshore Mech. Arct. Eng.
,
142
(
6
), p.
061201
.
22.
Venkateswarlu
,
V.
,
Praveen
,
K. M.
,
Vijay
,
K. G.
,
Anil
,
K.
, and
Karmakar
,
D.
,
2022
, “
Oblique Wave Interaction With a Two-Layer Pile-Rock Breakwater Placed on Elevated Bottom
,”
Ships Offshore Struct.
,
17
(
4
), pp.
852
865
.
23.
Singla
,
S.
,
Behera
,
H.
,
Martha
,
S. C.
, and
Sahoo
,
T.
,
2022
, “
Scattering of Water Waves by Very Large Floating Structure in the Presence of a Porous Box
,”
ASME J. Offshore Mech. Arct. Eng.
,
144
(
4
), p.
041904
.
24.
Praveen
,
K. M.
,
Venkateswarlu
,
V.
, and
Karmakar
,
D.
,
2022
, “
Hydroelastic Response of Floating Elastic Plate in the Presence of Vertical Porous Barriers
,”
Ships Offshore Struct.
,
17
(
2
), pp.
457
471
.
25.
Losada
,
I. J.
,
Silva
,
R.
, and
Losada
,
M. A.
,
1996
, “
3-D Non-Breaking Regular Wave Interaction With Submerged Breakwaters
,”
Coast. Eng.
,
28
(
1–4
), pp.
229
248
.
26.
Isaacson
,
M.
,
Baldwin
,
J.
,
Allyn
,
N.
, and
Cowdell
,
S.
,
2000
, “
Wave Interactions With Perforated Breakwater
,”
J. Waterw. Port Coast. Ocean Eng.
,
126
(
5
), pp.
229
235
.
27.
Choopanizade
,
M. J.
,
Bakhtiari
,
M.
, and
Rostami
,
M.
,
2020
, “
Wave Transmission Through the Perforated Half-Depth Block-Made Wall Breakwater: An Experimental Study
,”
Ocean Eng.
,
215
, p.
107895
.
28.
Celli
,
D.
,
Li
,
Y.
,
Ong
,
M. C.
, and
Di Risio
,
M.
,
2019
, “
The Role of Submerged Berms on the Momentary Liquefaction Around Conventional Rubble Mound Breakwaters
,”
Appl. Ocean Res.
,
85
, pp.
1
11
.
29.
Celli
,
D.
,
Li
,
Y.
,
Ong
,
M. C.
, and
Di Risio
,
M.
,
2020
, “
Random Wave-Induced Momentary Liquefaction Around Rubble Mound Breakwaters With Submerged Berms
,”
J. Mar. Sci. Eng.
,
8
(
5
), p.
338
.
30.
Twu
,
S. W.
, and
Chieu
,
C. C.
,
2000
, “
A Highly Wave Dissipation Offshore Breakwater
,”
Ocean Eng.
,
27
(
3
), pp.
315
330
.
31.
Venkateswarlu
,
V.
,
Vijay
,
K. G.
, and
Nishad
,
C. S.
,
2021
, “
Iterative Dual Boundary Element Analysis of a Wavy Porous Plate Near an Inclined Seawall
,”
Ocean Eng.
,
235
, p.
109242
.
32.
Cho
,
Y. S.
,
Lee
,
J. I.
, and
Kim
,
Y. T.
,
2004
, “
Experimental Study of Strong Reflection of Regular Water Waves Over Submerged Breakwaters in Tandem
,”
Ocean Eng.
,
31
(
10
), pp.
1325
1335
.
33.
Behera
,
H.
,
Gayathri
,
R.
, and
Selvan
,
S. A.
,
2020
, “
’Wave Attenuation by Multiple Outer Porous Barriers in the Presence of an Inner Rigid Cylinder
,”
J. Waterw. Port Coast. Ocean Eng.
,
146
(
1
), p.
04019035
.
34.
Vijay
,
K. G.
,
Venkateswarlu
,
V.
, and
Sahoo
,
T.
,
2021
, “
Bragg Scattering of Surface Gravity Waves by an Array of Submerged Breakwaters and a Floating Dock
,”
Wave Motion
,
106
, p.
102807
.
35.
Praveen
,
K. M.
,
Venkateswarlu
,
V.
, and
Karmakar
,
D.
,
2022
, “
Wave Transformation Due to Finite Floating Elastic Plate With Abrupt Change in Bottom Topography
,”
Ships Offshore Struct.
,
17
(
8
), pp.
1824
1842
.
You do not currently have access to this content.