Abstract

The focal point of the current study lies in investigating oblique wave scattering within the framework of linear potential theory, with particular attention to scenarios involving asymmetric trenches of both finite and infinite depths. By employing the eigenfunction expansion method, the physical problem undergoes a transformation into an equivalent boundary value problem. This newly formulated problem is characterized by a system of four weakly singular integral equations, which pertain to the horizontal component of velocity across the gaps situated above the edges of the trenches. The solution to these integral equations is achieved through the utilization of a multi-term Galerkin approximation method. This approach involves expansions using ultraspherical Gegenbauer polynomials as basis functions, coupled with the appropriate weight functions tailored to address the one-third singularity. Graphical representations are employed to depict the numerical evaluations of reflection and transmission coefficients across various non-dimensional parameters. These visualizations offer insight into the behavior and dependencies of these coefficients under different conditions. To validate the accuracy of the current model, it is compared against previously published results available in the literature.

References

1.
Lassiter
,
J. B.
,
1972
, “
The Propagation of Water Waves Over Sediment Pockets
,” Ph.D. thesis,
Massachusetts Institute of Technology Press
,
Cambridge, MA
.
2.
Lee
,
J. J.
, and
Ayer
,
R. M.
,
1981
, “
Wave Propagation Over a Rectangular Trench
,”
J. Fluid Mech.
,
110
, pp.
335
347
.
3.
Miles
,
J. W.
,
1982
, “
On Surface-Wave Diffraction by a Trench
,”
J. Fluid Mech.
,
115
, pp.
315
325
.
4.
Kirby
,
J. T.
, and
Dalrymple
,
R. A.
,
1983
, “
Propagation of Obliquely Incident Water Waves Over a Trench
,”
J. Fluid Mech.
,
133
, pp.
47
63
.
5.
Kirby
,
J. T.
,
Dalrymple
,
R. A.
, and
Seo
,
S.
,
1987
, “
Propagation of Obliquely Incident Water Waves Over a Trench. Part 2. Currents Flowing Along the Trench
,”
J. Fluid Mech.
,
176
, pp.
95
116
.
6.
Jung
,
T. H.
,
Suh
,
K. D.
,
Lee
,
S. O.
, and
Cho
,
Y. S.
,
2008
, “
Linear Wave Reflection by Trench With Various Shapes
,”
Ocean Eng.
,
35
(
11–12
), pp.
1226
1234
.
7.
Bender
,
C. J.
, and
Dean
,
R. G.
,
2003
, “
Wave Transformation by Two-Dimensional Bathymetric Anomalies With Sloped Transitions
,”
Coast. Eng.
,
50
(
1-2
), pp.
61
84
.
8.
Sturova
,
I. V.
,
2005
, “
Surface Waves Induced by External Periodic Pressure in a Fluid With an Uneven Bottom
,”
J. Appl. Mech. Tech. Phys.
,
46
(
1
), pp.
55
61
.
9.
Bhattacharjee
,
J.
, and
Soares
,
C.
,
2010
, “
Wave Interaction With a Floating Rectangular Box Near a Vertical Wall With Step Type Bottom Topography
,”
J. Hydrodyn. Ser. B
,
22
(
5
), pp.
91
96
.
10.
Xie
,
J. J.
,
Liu
,
H. W.
, and
Lin
,
P.
,
2011
, “
Analytical Solution for Long Wave Reflection by a Rectangular Obstacle With Two Scour Trenches
,”
ACSE J. Eng. Mech.
,
137
(
12
), pp.
919
930
.
11.
Liu
,
H. W.
,
Fu
,
D. J.
, and
Sun
,
X. L.
,
2013
, “
Analytic Solution to the Modified Mild-Slope Equation for Reflection by a Rectangular Breakwater With Scour Trenches
,”
ACSE J. Eng. Mech.
,
139
(
1
), pp.
39
58
.
12.
Kim
,
S.
,
Jun
,
K.
, and
Lee
,
H.
,
2015
, “
The Wave Energy Scattering by Interaction With the Refracted Breakwater and Varying Trench Depth
,”
Adv. Mech. Eng.
,
7
(
5
), pp.
1
8
.
13.
Xie
,
J.
, and
Liu
,
H.
,
2012
, “
An Exact Analytic Solution to the Modified Mild-Slope Equation for Waves Propagating Over a Trench With Various Shapes
,”
Ocean Eng.
,
50
, pp.
72
82
.
14.
Kar
,
P.
,
Koley
,
S.
, and
Sahoo
,
T.
,
2018
, “
Scattering of Surface Gravity Waves Over a Pair of Trenches
,”
Appl. Math. Model.
,
62
, pp.
303
320
.
15.
Kar
,
P.
,
Sahoo
,
T.
, and
Meylan
,
M. H.
,
2020
, “
Bragg Scattering of Long Waves by an Array of Floating Flexible Plates in the Presence of Multiple Submerged Trenches
,”
Phys. Fluids
,
32
(
2
), p.
096603
.
16.
Evans
,
D. V.
, and
Morris
,
C.
,
1972
, “
The Effect of a Fixed Vertical Barrier on Obliquely Incident Surface Waves in Deep Water
,”
IMA J. Appl. Math.
,
9
, pp.
198
204
.
17.
Porter
,
R.
, and
Evans
,
D.
,
1995
, “
Complementary Approximations to Wave Scattering by Vertical Barriers
,”
J. Fluid Mech.
,
294
, pp.
155
180
.
18.
Evans
,
D. V.
, and
Fernyhough
,
M.
,
1995
, “
Edge Waves Along Periodic Coastlines. Part 2
,”
J. Fluid Mech.
,
297
, pp.
307
325
.
19.
Chakraborty
,
R.
, and
Mandal
,
B. N.
,
2014
, “
Water Wave Scattering by a Rectangular Trench
,”
J. Eng. Math.
,
89
(
1
), pp.
101
112
.
20.
Chakraborty
,
R.
, and
Mandal
,
B. N.
,
2014
, “
Oblique Wave Scattering by a Rectangular Submarine Trench
,”
ANZIAM J.
,
56
, pp.
286
298
.
21.
Roy
,
R.
,
Chakraborty
,
R.
, and
Mandal
,
B. N.
,
2017
, “
Propagation of Water Waves Over an Asymmetrical Rectangular Trench
,”
Q. J. Mech. Appl. Math.
,
70
(
1
), pp.
49
64
.
22.
Dolai
,
P.
, and
Dolai
,
D. P.
,
2018
, “
Scattering of Oblique Water Waves by an Infinite Step
,”
Int. J. Appl. Mech. Eng.
,
23
(
2
), pp.
327
338
.
23.
Kaur
,
A.
,
Martha
,
S. C.
, and
Chakrabarti
,
A.
,
2019
, “
Solution of the Problem of Propagation of Water Waves Over a Pair of Asymmetrical Rectangular Trenches
,”
Appl. Ocean Res.
,
93
, p.
101946
.
24.
Paul
,
S.
, and
De
,
S.
,
2022
, “
Flexural Gravity Wave Scattering Due to a Pair of Asymmetric Rectangular Trenches
,”
Waves Random Complex Media.
25.
Paul
,
S.
,
Sasmal
,
A.
, and
De
,
S.
,
2019
, “
Interaction of Oblique Waves With an Ice Sheet Over an Asymmetric Trench
,”
Ocean Eng.
,
193
, p.
106613
.
26.
Sasmal
,
A.
,
Paul
,
S.
, and
De
,
S.
,
2019
, “
The Influence of Surface Tension on Oblique Wave Scattering by a Rectangular Trench
,”
J. Appl. Fluid Mech.
,
12
(
1
), pp.
233
241
.
27.
Sasmal
,
A.
, and
De
,
S.
,
2021
, “
Propagation of Oblique Water Waves by an Asymmetric Trench in the Presence of Surface Tension
,”
J. Ocean Eng. Sci.
,
6
(
2
), pp.
206
214
.
28.
Sasmal
,
A.
, and
De
,
S.
,
2022
, “
Wave Interaction With a Rectangular Bar in the Presence of Two Trenches
,”
Appl. Ocean Res.
,
124
, p.
103206
.
29.
Sarkar
,
B.
,
Roy
,
R.
, and
De
,
S.
,
2022
, “
Oblique Wave Interaction by Two Thin Vertical Barriers Over an Asymmetric Trench
,”
Math. Methods Appl. Sci.
,
45
(
17
), pp.
11667
11682
.
30.
Ray
,
S.
,
Sarkar
,
B.
, and
De
,
S.
,
2023
, “
Oblique Wave Interaction With an Infinite Trench in Presence of a Bottom-Standing Thick Rectangular Barrier
,”
J. Eng. Math.
,
141
(
1
), p.
1
.
31.
Liang
,
H.
,
Chen
,
X.
, and
Chan
,
E. S.
,
2015
, “
Radiation of Water Waves by a Heaving Disc in a Uniform Current
,”
Appl. Ocean Res.
,
53
, pp.
75
90
.
32.
Martin
,
P. A.
, and
Llewellyn Smith
,
S. G.
,
2011
, “
Generation of Internal Gravity Waves by an Oscillating Horizontal Disc
,”
Proc. R. Soc. A: Math. Phys. Eng. Sci.
,
476
, pp.
3406
3423
.
33.
Porter
,
R.
,
2015
, “
Linearised Water Wave Problems Involving Submerged Horizontal Plates
,”
Appl. Ocean Res.
,
50
, pp.
91
109
.
34.
Zheng
,
S.
,
Liang
,
H.
,
Michele
,
S.
, and
Greaves
,
D.
,
2023
, “
Water Wave Interaction With an Array of Submerged Circular Plates: Hankel Transform Approach
,”
Phys. Rev. Fluids
,
8
(
1
), p.
014803
.
35.
Newman
,
J. N.
,
1977
,
Marine Hydrodynamics
,
Massachusetts Institute of Technology Press
,
Cambridge, MA
.
36.
Liang
,
H.
,
Faltinsen
,
O. M.
, and
Shao
,
Y. L.
,
2011
, “
Application of a 2D Harmonic Polynomial Cell (HPC) Method to Singular Flows and Lifting Problems
,”
Appl. Ocean Res.
,
53
, p.
75-90
.
37.
Newman
,
J. N.
,
1965
, “
Propagation of Water Waves Over an Infinite Step
,”
J. Fluid Mech.
,
23
, pp.
399
415
.
38.
Mandal
,
B.
, and
Chakrabarti
,
A.
,
2000
,
Water Wave Scattering by Barriers
,
Wit Pr/Computational Mechanics
,
Southampton, UK
.
39.
Havelock
,
T. H.
,
1929
, “
Lix. Forced Surface-Waves on Water
,”
Lond. Edinb. Dublin Philos. Mag. J. Sci.
,
8
(
51
), pp.
569
576
.
You do not currently have access to this content.