Abstract

A two-dimensional model to estimate the hydrodynamic response of hinged multiple floating body systems in the time domain is established based on the Kane method. The reduced Kane equations applicable to the dynamic response of multi-floating body system with hinges are first deduced. The issue of hinge constraint in the system is addressed by defining the corresponding generalized speeds as zeros, while the wave actions are considered based on the potential flow theory. Then the corresponding calculation program is developed prior to undertaking the model test. Verification of the Kane-based model and the veracity of the program developed is performed through a series of contrastive analyses on a hinged floating bridge in various cases including regular waves, moving loads, and their combinations. The predictions obtained by the proposed model show satisfactory agreements with the model test measurements. The related results indicate that the motion responses of the first pontoon are greatest in a hinged floating bridge, and its motion amplitudes descend nonlinearly with the increment of wave frequency. The time-history motion responses of hinged multi-floating bodies in the middle present saddle shapes with some fluctuations as a whole under the combined effect of wave and moving loads. The Kane-based model is convenient to analyze the dynamic characteristics of a hinged multi-floating body system in regular waves, and it could be further extended to consider the effects of irregular waves, inhomogeneous sea conditions, as well as the nonlinear connections on the system.

References

1.
Zhang
,
X. T.
,
Lu
,
D.
,
Guo
,
F.
,
Gao
,
Y.
, and
Sun
,
Y. G.
,
2018
, “
The Maximum Wave Energy Conversion by Two Interconnected Floaters: Effects of Structural Flexibility
,”
Appl. Ocean Res.
,
71
, pp.
34
47
.
2.
Ding
,
J.
,
Xie
,
Z. Y.
,
Wu
,
Y. S.
,
Xu
,
S. W.
,
Qiu
,
G. Y.
,
Wang
,
Y. T.
, and
Wang
,
Q. B.
,
2020
, “
Numerical and Experimental Investigation on Hydroelastic Responses of an 8-Module VLFS Near a Typical Island
,”
Ocean Eng.
,
214
, p.
107841
.
3.
Huang
,
H.
,
Chen
,
X. J.
,
Liu
,
J. Y.
, and
Chen
,
Q. F.
,
2021
, “
A Theoretical Calculation Method of Irregular Bridge Span Pontoon Connected by Elastic Hinges
,”
Mar. Struct.
,
76
, p.
102929
.
4.
Liu
,
J. Y.
,
Chen
,
X. J.
,
Huang
,
H.
,
Ji
,
S.
, and
Tu
,
Q. Z.
,
2023
, “
A Simplified Method to Analyze Dynamic Response of VLFS Based on the Kane Method
,”
ASME J. Offshore Mech. Arct. Eng.
,
145
(
3
), p.
031701
.
5.
Liu
,
Y. Q.
,
Ren
,
N. X.
, and
Ou
,
J. P.
,
2022
, “
Hydrodynamic Analysis of a Hybrid Modular Floating Structure System and Its Expansibility
,”
Ships Offshore Struct.
,
17
(
10
), pp.
2367
2377
.
6.
Miao
,
Y. J.
,
Chen
,
X. J.
,
Ye
,
Y. L.
,
Ding
,
J.
, and
Huang
,
H.
,
2021
, “
Numerical Modeling and Dynamic Analysis of a Floating Bridge Subjected to Wave, Current and Moving Loads
,”
Ocean Eng.
,
225
, p.
108810
.
7.
Liu
,
C. H.
,
Yang
,
Q. J.
, and
Bao
,
G.
,
2018
, “
State-Space Approximation of Convolution Term in Time Domain Analysis of a Raft-Type Wave Energy Converter
,”
Energies
,
11
(
1
), p.
169
.
8.
Peng
,
W.
,
Lee
,
K. H.
,
Mizutani
,
N.
, and
Huang
,
X. Y.
,
2015
, “
Experimental and Numerical Study on Hydrodynamic Performance of a Wave Energy Converter Using Wave-Induced Motion of Floating Body
,”
J. Renewable Sustainable Energy
,
7
(
5
), p.
053106
.
9.
Wang
,
H. H.
, and
Jin
,
X. L.
,
2016
, “
Dynamic Analysis of Maritime Gasbag-Type Floating Bridge Subjected to Moving Loads
,”
Int J. Nav. Arch. Ocean
,
8
(
2
), pp.
137
152
.
10.
Peng
,
W.
,
Huang
,
X. Y.
,
Fan
,
Y. N.
,
Zhang
,
J. S.
, and
Ren
,
X. Y.
,
2017
, “
Numerical Analysis and Performance Optimization of a Submerged Wave Energy Converting Device Based on the Floating Breakwater
,”
J. Renewable Sustainable Energy
,
9
(
4
), p.
044503
.
11.
Zhang
,
H. C.
,
Xu
,
D. L.
,
Lu
,
C.
,
Qi
,
E. R.
,
Tian
,
C.
, and
Wu
,
Y. S.
,
2017
, “
Connection Effect on Amplitude Death Stability of Multi-Module Floating Airport
,”
Ocean Eng.
,
129
, pp.
46
56
.
12.
Huang
,
H.
,
Chen
,
X. J.
,
Liu
,
J. Y.
,
Miao
,
Y. J.
, and
Ji
,
S.
,
2021
, “
A Method to Estimate Dynamic Responses of VLFS Based on Multi-Floating-Module Model Connected by Elastic Hinges
,”
China Ocean Eng.
,
35
(
5
), pp.
687
699
.
13.
Liu
,
J. Y.
,
Chen
,
X. J.
,
Huang
,
H.
,
Ji
,
S.
, and
Tu
,
Q. Z.
,
2022
, “
A Three-Dimensional Model to Analyse Dynamic Response of VLFS Based on the Kane Method
,”
Ships Offshore Struct.
, pp.
1
13
.
14.
Tajali
,
Z.
, and
Shafieefar
,
M.
,
2011
, “
Hydrodynamic Analysis of Multi-Body Floating Piers Under Wave Action
,”
Ocean Eng.
,
38
(
17–18
), pp.
1925
1933
.
15.
Zhang
,
H. C.
,
Xu
,
D. L.
,
Lu
,
C.
,
Qi
,
E. R.
,
Hu
,
J. J.
, and
Wu
,
Y. S.
,
2015
, “
Amplitude Death of a Multi-Module Floating Airport
,”
Nonlinear Dyn.
,
79
(
4
), pp.
2385
2394
.
16.
Zhang
,
H. C.
,
Xu
,
D. L.
,
Lu
,
C.
,
Xia
,
S. Y.
,
Qi
,
E. R.
,
Hu
,
J. J.
, and
Wu
,
Y. S.
,
2015
, “
Network Dynamic Stability of Floating Airport Based on Amplitude Death
,”
Ocean Eng.
,
104
, pp.
129
139
.
17.
Zhang
,
H. C.
,
Xu
,
D. L.
,
Xia
,
S. Y.
,
Lu
,
C.
,
Qi
,
E. R.
,
Tian
,
C.
, and
Wu
,
Y. S.
,
2015
, “
Nonlinear Network Modeling of Multi-Module Floating Structures With Arbitrary Flexible Connections
,”
J. Fluid Struct.
,
59
, pp.
270
284
.
18.
Shi
,
Q. J.
,
Zhang
,
H. C.
,
Xu
,
D. L.
,
Qi
,
E. R.
,
Tian
,
C.
,
Ding
,
J.
,
Wu
,
Y. S.
,
Lu
,
D.
, and
Li
,
Z. W.
,
2018
, “
Experimental Validation of Network Modeling Method on a Three-Modular Floating Platform Model
,”
Coastal Eng.
,
137
, pp.
92
102
.
19.
Ren
,
N. X.
,
Zhang
,
C.
,
Magee
,
A. R.
,
Hellan
,
Ø.
,
Dai
,
J.
, and
Ang
,
K. K.
,
2019
, “
Hydrodynamic Analysis of a Modular Multi-Purpose Floating Structure System With Different Outermost Connector Types
,”
Ocean Eng.
,
176
, pp.
158
168
.
20.
Jiang
,
C. Q.
,
el Moctar
,
O. E.
, and
Schellin
,
T. E.
,
2021
, “
Hydrodynamic Sensitivity of Moored and Articulated Multibody Offshore Structures in Waves
,”
J. Mar. Sci. Eng.
,
9
(
9
), p.
1028
.
21.
Jiang
,
C. Q.
,
el Moctar
,
O. E.
, and
Schellin
,
T. E.
,
2022
, “
Capability of a Potential-Flow Solver to Analyze Articulated Multibody Offshore Modules
,”
Ocean Eng.
,
266
, p.
112754
.
22.
Wang
,
S. S.
,
Moan
,
T.
, and
Gao
,
Z.
,
2023
, “
Methodology for Global Structural Load Effect Analysis of the Semi-Submersible Hull of Floating Wind Turbines Under Still Water, Wind, and Wave Loads
,”
Mar. Struct.
,
91
, p.
103463
.
23.
Wang
,
S. S.
,
Xing
,
Y. H.
,
Balakrishna
,
R.
,
Shi
,
W.
, and
Xu
,
X. S.
,
2023
, “
Design, Local Structural Stress, and Global Dynamic Response Analysis of a Steel Semi-Submersible Hull for a 10-MW Floating Wind Turbine
,”
Eng. Struct.
,
291
, p.
116474
.
24.
Sun
,
L.
,
Eatock Taylor
,
R.
, and
Choo
,
Y. S.
,
2012
, “
Multi-Body Dynamic Analysis of Float-Over Installations
,”
Ocean Eng.
,
51
, pp.
1
15
.
25.
Huang
,
H.
,
Chen
,
X. J.
,
Liu
,
J. Y.
,
Shen
,
H. P.
, and
Miao
,
Y. J.
,
2021
, “
Structural Analysis Method of a Pontoon Separated Floating Bridge Connected by Elastic Hinges
,”
Ships Offshore Struct.
,
17
(
9
), pp.
2045
2057
.
26.
Kane
,
T. R.
, and
Levinson
,
D. A.
,
1985
,
Dynamics: Theory and Applications
,
McGraw-Hill Book Company
,
New York
, pp.
99
159
.
27.
Huston
,
R. L.
,
1990
,
Multibody Dynamics
,
Butterworth-Heinemann
,
Stoneham, MA
,
81
227
.
28.
Liu
,
J. Y.
,
Hearn
,
G. E.
,
Chen
,
X. J.
,
Jiang
,
Z. B.
, and
Wu
,
G. H.
,
2017
, “
Analysis of Dynamic Response of a Restraining System for a Powerless Advancing Ship Based on the Kane Method
,”
Ocean Eng.
,
131
, pp.
114
134
.
29.
Wu
,
Y. S.
,
1984
, “
Hydroelasticity of Floating Bodies
,”
Ph.D. thesis
,
Brunel University
,
London, UK
, pp.
107
270
.
30.
Falnes
,
J.
,
2002
,
Ocean Waves and Oscillating Systems Linear Interactions Including Wave-Energy Extraction
,
Cambridge University Press
,
Cambridge, UK
, pp.
71
98
.
31.
Faltinsen
,
O. M.
,
1993
,
Sea Loads on Ships and Offshore Structures
,
Cambridge University Press
,
Cambridge, UK
, pp.
41
43
.
32.
Zeraatgar
,
H.
,
Asghari
,
M.
, and
Bakhtiari-Nejad
,
F.
,
2010
, “
A Study of the Roll Motion by Means of a Free Decay Test
,”
ASME J. Offshore Mech. Arct. Eng.
,
132
(
3
), p.
031303
.
You do not currently have access to this content.