Abstract

Engineering usually considers coarse-grained soils as non-frost swelling soils, but serious frost swelling still occurs in coarse-grained canal bases, which is directly related to the recharge conditions and the fine particle content in the soil. Little attention is currently paid to the effect of different fine particle contents on coarse-grained soil frost swelling, especially after the fine particle admixture content exceeds 16%. This paper considers the characteristics of coarse-grained soils in water conservancy projects with fines content between 0% and 50%. The coarse-grained soils with 5%, 15%, 25%, 35%, and 45% fines content were designed for freezing and swelling tests. The evolution of temperature and moisture fields and the amount of freezing and swelling of coarse-grained soils during the freezing process were studied by using servo-type freezing and swelling and thawing tester. The experimental results show that the cooling process of soil samples can be divided into a rapid cooling stage, a slow cooling stage, and a freezing stabilization stage. The cooling rate and the frost heave amount with increasing fines content showed a trend of first increasing and then decreasing.

References

1.
Chen
,
B.
, and
Li
,
J. P.
,
2008
, “
Characteristics of Spatial and Temporal Variation of Seasonal and Short-Term Frozen Soil in China in Recent 50 Years
,”
Chin. J. Atmos. Sci.
,
32
(
3
), pp.
432
443
.
2.
Li
,
S.
,
Lai
,
Y.
,
Pei
,
W.
,
Zhang
,
S.
, and
Zhong
,
H.
,
2014
, “
Moisture-Temperature Changes and Freeze-Thaw Hazards on a Canal in Seasonally Frozen Regions
,”
Nat. Hazards
,
72
(
2
), pp.
287
308
.
3.
Li
,
S.
,
Zhang
,
M.
,
Tian
,
Y.
,
Pei
,
W.
, and
Zhong
,
H.
,
2015
, “
Experimental and Numerical Investigations on Frost Damage Mechanism of a Canal in Cold Regions
,”
Cold Reg. Sci. Technol.
,
116
, pp.
1
11
.
4.
Wang
,
Y. T.
,
Wang
,
D. Y.
,
Ma
,
W.
,
Wen
,
Z.
,
Chen
,
S. J.
, and
Xu
,
X. T.
,
2018
, “
Laboratory Observation and Analysis of Frost Heave Progression in Clay From the Qinghai-Tibet Plateau
,”
Appl. Therm. Eng.
,
131
, pp.
381
389
.
5.
Lai
,
Y. M.
,
Wu
,
D. Y.
, and
Zhang
,
M. Y.
,
2017
, “
Crystallization Deformation of a Saline Soil During Freezing and Thawing Processes
,”
Appl. Therm. Eng.
,
120
, pp.
463
473
.
6.
Wang
,
D. Y.
,
Wang
,
Y. T.
,
Ma
,
W.
,
Lei
,
L. L.
, and
Wen
,
Z.
,
2018
, “
Study on the Freezing-Induced Soil Moisture Redistribution Under the Applied High Pressure
,”
Cold Reg. Sci. Technol.
,
145
, pp.
135
141
.
7.
Zhang
,
F.
,
Yang
,
Z. H.
,
Still
,
B.
,
Wang
,
J. H.
,
Yu
,
H. L.
,
Zubeck
,
H.
,
Petersen
,
T.
, and
Aleshire
,
L.
,
2018
, “
Elastic Properties of Saline Permafrost During Thawing by Bender Elements and Bending Disks
,”
Cold Reg. Sci. Technol.
,
146
, pp.
60
71
.
8.
Ling
,
X. Z.
,
Zhang
,
F.
,
Li
,
Q. L.
,
An
,
L. S.
, and
Wang
,
J. H.
,
2015
, “
Dynamic Shear Modulus and Damping Ratio of Frozen Compacted Sand Subjected to Freeze-Thaw Cycle Under Multi-stage Cyclic Loading
,”
Soil Dyn. Earthquake Eng.
,
76
, pp.
111
121
.
9.
Viklander
,
P.
,
1998
, “
Laboratory Study of Stone Heave in Till Exposed to Freezing and Thawing
,”
Cold Reg. Sci. Technol.
,
27
(
2
), pp.
141
152
.
10.
Arenson
,
L. U.
, and
Sego
,
D. C.
,
2006
, “
The Effect of Salinity on the Freezing of Coarsegrained Sands
,”
Can. Geotech. J.
,
43
(
3
), pp.
325
337
.
11.
Koopmans
,
R. W. R.
, and
Miller
,
R. D.
,
1966
, “
Soil Freezing and Soil Water Characteristic Curves
,”
Soil Sci. Soc. Am. J.
,
30
(
6
), pp.
680
685
.
12.
Konrad
,
J.
, and
Lemieux
,
N.
,
2005
, “
Influence of Fines on Frost Heave Characteristics of a Well-Graded Base-Course Material
,”
Can. Geotech. J.
,
42
(
2
), pp.
515
527
.
13.
Reike
,
R.
,
Vinson
,
T. S.
, and
Mageau
,
D. W.
,
1983
, “
The Role of Specific Surface Area and Related Index Properties in the Frost Heave Susceptibility of Soils
,”
Proceedings of the 4th International Conference on Permafrost
,
Fairbanks, AL
,
July 17–22
, pp.
1066
1071
.
14.
Bilodeau J
,
P.
,
Dore
,
G.
, and
Pierre
,
P.
,
2008
, “
Gradation Influence on Frost Susceptibility of Base Granular Materials
,”
Int. J. Pavement Eng.
,
9
(
6
), pp.
397
411
.
15.
Tester
,
R. E.
, and
Gaskin
,
P. N.
,
1996
, “
Effect of Fines Content on Frost Heave
,”
Can. Geotech. J.
,
33
(
4
), pp.
678
680
.
16.
Wang
,
T.-L.
,
Yue
,
Z.-R.
,
Ma
,
C.
, and
Wu
,
Z.
,
2014
, “
An Experimental Study on the Frost Heave Properties of Coarse Grained Soils
,”
Transp. Geotech.
,
1
(
3
), pp.
137
144
.
17.
Li
,
A. Y.
,
Niu
,
F. J.
,
Zheng
,
H.
,
Akagawa
,
S.
,
Lin
,
Z. J.
, and
Luo
,
J.
,
2017
, “
Experimental Measurement and Numerical Simulation of Frost Heave in Saturated Coarse-Grained Soil
,”
Cold Reg. Sci. Technol.
,
137
, pp.
68
74
.
18.
Gao
,
J. Q.
,
Lai
,
Y. M.
,
Zhang
,
M. Y.
, and
Feng
,
Z. L.
,
2018
, “
Experimental Study on the Water-Heat-Vapor Behavior in a Freezing Coarse-Grained Soil
,”
Appl. Therm. Eng.
,
128
, pp.
956
965
.
19.
She
,
W.
,
Wei
,
L. S.
,
Zhao
,
G. T.
,
Yang
,
G. T.
,
Jiang
,
J. Y.
, and
Hong
,
J. X.
,
2019
, “
New Insights Into the Frost Heave Behavior of Coarse Grained Soils for High-Speed Railway Roadbed: Clustering Effect of Fines
,”
Cold Reg. Sci. Technol.
,
167
.
20.
Founie
,
W. J.
,
Barnes
,
D. L.
, and
Shur
,
Y.
,
2007
, “
The Formation of Ice From the Infiltration of Water Into a Frozen Coarse Grained Soil
,”
Cold Reg. Sci. Technol.
,
48
(
2
), pp.
118
128
.
21.
Wong
,
S. T. Y.
,
Ong
,
D. E. L.
, and
Robinson
,
R. G.
,
2017
, “
Behaviour of MH Silts With Varying Plasticity Indices
,”
Geotech. Res.
,
4
(
2
), pp.
118
135
.
22.
Liu
,
Y.
,
Liu
,
Z.
,
Oh
,
E.
, and
Ong
,
D. E. L.
,
2021
, “
Strength and Microstructural Assessment of Reconstituted and Stabilised Soft Soils With Varying Silt Contents
,”
Geosciences
,
11
(
8
), p.
302
.
You do not currently have access to this content.