Abstract

This paper presents an optimization tool for jacket structures to support Offshore Wind Turbines (OWTs). The tool incorporates several combinations of optimization algorithms and constraint-handling techniques (CHTs): Genetic Algorithm; Differential Evolution (DE); Tournament Selection Method; Multiple Constraint Ranking (MCR); Adaptive Penalty Method, and Helper-and-Equivalent Optimization. The objective function regards the minimization of the jacket weight; the design variables are the diameter and thickness of the tubular members. The constraints are related to natural frequencies and Ultimate Limit State criteria. The candidate solutions are evaluated by full nonlinear time-domain Finite Element coupled analyses. To assess the optimization algorithms and CHTs, a case study is presented for the standardized OWT/jacket structure from the Offshore Code Comparison Collaboration Continuation project. First, a numerical model is built and validated, in terms of masses, natural frequencies, and vibration modes; then, this model is employed to run the optimization tool for all combinations of optimization algorithms and CHTs. The results indicate that, while all methods lead to feasible optimal solutions that comply with the constraints and present considerable weight reductions, the best performer is the combination of the DE algorithm with the MCR constraint-handling technique.

References

1.
Hau
,
E.
,
2013
,
Wind Turbines—Fundamentals, Technologies, Application, Economics
,
Springer
,
New York
.
2.
IRENA
,
2019
, “
Future of Wind—Deployment, Investment, Technology, Grid Integration and Socio-Economic Aspects
,”
International Renewable Energy Agency
.
3.
Wang
,
X.
,
Zeng
,
X.
,
Li
,
J.
,
Yang
,
X.
, and
Wang
,
H.
,
2018
, “
A Review on Recent Advancements of Substructures for Offshore Wind Turbines
,”
Energy Convers. Manage.
,
158
, pp.
103
119
.
4.
Arshad
,
M.
, and
O’Kelly
,
B.
,
2019
, “
Global Status of Wind Power Generation: Theory, Practice, and Challenges
,”
Int. J. Green Energy
,
16
(
14
), pp.
1073
1090
.
5.
Tian
,
X.
,
Wang
,
Q.
,
Liu
,
G.
,
Liu
,
Y.
,
Xie
,
Y.
, and
Deng
,
W.
,
2019
, “
Topology Optimization Design for Offshore Platform Jacket Structure
,”
Appl. Ocean Res.
,
84
, pp.
38
50
.
6.
Martens
,
J. H.
,
2014
,
Topology Optimization of a Jacket for an Offshore Wind Turbine by Utilization of Genetic Algorithm, Master Thesis
,
NTNU—Norwegian University of Science and Technology, Department of Civil and Transport Engineering
,
Trondheim, Norway
.
7.
Kaiser
,
M. J.
, and
Snyder
,
B.
,
2010
, “
Offshore Wind Energy Installation and Decommissioning Cost Estimation in the U.S. Outer Continental Shelf
,”
U.S. Dept. of the Interior, Bureau of Ocean Energy Management, Regulation and Enforcement
.
8.
Couceiro
,
I.
,
París
,
J.
,
Navarrina
,
F.
,
Guizán
,
R.
, and
Colominas
,
I.
,
2020
, “
Optimization of Offshore Steel Jackets: Review and Proposal of a New Formulation for Time-Dependent Constraints
,”
Arch. Comput. Meth. Eng.
,
27
(
4
), pp.
1049
1069
.
9.
Muskulus
,
M.
, and
Schafhirt
,
S.
,
2014
, “
Design Optimization of Wind Turbine Support Structures—A Review
,”
J. Ocean Wind Energy
,
1
(
1
), pp.
12
22
.
10.
Vorpahl
,
F.
,
Popko
,
W.
, and
Kaufer
,
D.
,
2011
, “
Description of a Basic Model of the “UpWind Reference Jacket” for Code Comparison in the OC4 Project Under IEA Wind Annex XXX
,”
Technical Report
.
11.
Zhang
,
J.
,
Kang
,
W.-H.
,
Sun
,
K.
, and
Liu
,
F.
,
2019
, “
Reliability-Based Serviceability Limit State Design of a Jacket Substructure for an Offshore Wind Turbine
,”
Energies
,
12
(
14
), p.
2751
.
12.
Natarajan
,
A.
,
Stolpe
,
M.
, and
Njomo Wandji
,
W.
,
2019
, “
Structural Optimization Based Design of Jacket Type Sub-Structures for 10 MW Offshore Wind Turbines
,”
Ocean Eng.
,
172
, pp.
629
640
.
13.
Chew
,
K. H.
,
Muskulus
,
M.
,
Zwick
,
D.
,
Ng
,
E. Y. K.
, and
Tai
,
K.
,
2013
, “
Structural Optimization and Parametric Study of Offshore Wind Turbine Jacket Substructure
,”
Proceedings of the Twenty-Third International Offshore and Polar Engineering—ISOPE 2013
,
Anchorage, AK
,
June 30–July 5
, pp.
203
210
.
14.
Vorpahl
,
F.
, and
Popko
,
W.
,
2013
, “
Description of the Load Cases and Output Sensors to be Simulated in the OC4 Project Under IEA Wind Annex 30
,”
Technical Report, Fraunhofer IWES
.
15.
Chew
,
K.-H.
,
Tai
,
K.
,
Ng
,
E. Y. K.
, and
Muskulus
,
M.
,
2015
, “
Optimization of Offshore Wind Turbine Support Structures Using an Analytical Gradient-Based Method
,”
Energy Procedia
,
80
, pp.
100
107
.
16.
Chew
,
K.-H.
,
Tai
,
K.
,
Ng
,
E. Y. K.
, and
Muskulus
,
M.
,
2016
, “
Analytical Gradient-Based Optimization of Offshore Wind Turbine Substructures Under Fatigue and Extreme Loads
,”
Mar. Struct.
,
47
, pp.
23
41
.
17.
Tian
,
X.
,
Sun
,
X.
,
Liu
,
G.
,
Deng
,
W.
,
Wang
,
H.
,
Li
,
Z.
, and
Li
,
D.
,
2022
, “
Optimization Design of the Jacket Support Structure for Offshore Wind Turbine Using Topology Optimization Method
,”
Ocean Eng.
,
243
, p.
110084
.
18.
Schafhirt
,
S.
,
Zwick
,
D.
, and
Muskulus
,
M.
,
2014
, “
Reanalysis of Jacket Support Structure for Computer-Aided Optimization of OWT With a Genetic Algorithm
,”
J. Ocean Wind Energy
,
1
(
4
), pp.
209
216
.
19.
Hafele
,
J.
, and
Rolfes
,
R.
,
2016
, “
Approaching the Ideal Design of Jacket Substructures for Offshore Wind Turbines with a Particle Swarm Optimization Algorithm
,”
Proceedings of the Twenty-Sixth (2016) International Ocean and Polar Engineering Conference—ISOPE
,
Rhodes, Greece
,
June 26–July 1
, pp.
156
163
.
20.
AlHamaydeh
,
M.
,
Barakat
,
S.
, and
Nasif
,
O.
,
2017
, “
Optimization of Support Structures for Offshore Wind Turbines Using Genetic Algorithm With Domain-Trimming
,”
Math. Probl. Eng.
,
2017
, pp.
1
14
.
21.
Kaveh
,
A.
, and
Sabeti
,
S.
,
2018
, “
Structural Optimization of Jacket Supporting Structures for Offshore Wind Turbines Using Colliding Bodies Optimization Algorithm
,”
Struct. Des. Tall Special Build.
,
27
(
13
), p.
e1494
.
22.
Oest
,
J.
,
Sørensen
,
R.
,
T. Overgaard
,
L. C.
, and
Lund
,
E.
,
2017
, “
Structural Optimization With Fatigue and Ultimate Limit Constraints of Jacket Structures for Large Offshore Wind Turbines
,”
Struct. Multidiscipl. Optim.
,
55
(
3
), pp.
779
793
.
23.
Oest
,
J.
,
Sandal
,
K.
,
Schafhirt
,
S.
,
Stieng
,
L. E. S.
, and
Muskulus
,
M.
,
2018
, “
On Gradient-Based Optimization of Jacket Structures for Offshore Wind Turbines
,”
Wind Energy
,
21
(
11
), pp.
953
967
.
24.
Savsani
,
V.
,
Dave
,
P.
,
Raja
,
B. D.
, and
Patel
,
V.
,
2020
, “
Topology Optimization of an Offshore Jacket Structure Considering Aerodynamic, Hydrodynamic and Structural Forces
,”
Eng. Comput.
,
37
(
4
), pp.
1
20
.
25.
26.
Holland
,
J. H.
,
1975
,
Adaptation in Natural and Artificial Systems
,
University of Michigan Press,
Ann Arbor, MI
.
27.
Storn
,
R.
, and
Price
,
K.
,
1997
, “
Differential Evolution—A Simple and Efficient Heuristic for Global Optimization Over Continuous Spaces
,”
J. Global Optim.
,
11
(
4
), pp.
341
359
.
28.
Deb
,
K.
,
2000
, “
An Efficient Constraint Handling Method for Genetic Algorithms
,”
Comput. Methods Appl. Mech. Eng.
,
186
(
2–4
), pp.
311
338
.
29.
Barbosa
,
H. J. C.
, and
Lemonge
,
A. C. C.
,
2003
, “
A New Adaptive Penalty Scheme for Genetic Algorithms
,”
Inf. Sci.
,
156
(
3–4
), pp.
215
251
.
30.
de Paula Garcia
,
R.
,
de Lima
,
B. S. L. P.
,
de Castro Lemonge
,
A. C.
, and
Jacob
,
B. P.
,
2017
, “
A Rank-Based Constraint Handling Technique for Engineering Design Optimization Problems Solved by Genetic Algorithms
,”
Comput. Struct.
,
187
, pp.
77
87
.
31.
Xu
,
T.
,
He
,
J.
, and
Shang
,
C.
,
2022
, “
Helper and Equivalent Objectives: Efficient Approach for Constrained Optimization
,”
IEEE Trans. Cybern.
,
52
(
1
), pp.
240
251
.
32.
Jacob
,
B. P.
,
Bahiense
,
R. D. A.
,
Correa
,
F. N.
, and
Jacovazzo
,
B. M.
,
2012
, “
Parallel Implementations of Coupled Formulations for the Analysis of Floating Production Systems, Part I: Coupling Formulations
,”
Ocean Eng.
,
55
, pp.
206
218
.
33.
Jonkman
,
J.
,
Butterfield
,
S.
,
Musial
,
W.
, and
Scott
,
G.
,
2009
,
Definition of a 5-MW Reference Wind Turbine For Offshore System Development
,
National Renewable Energy Laboratory – NREL
,
Golden, CO
.
34.
van der Tempel
,
J.
, and
Molenaar
,
D. P.
,
2002
, “
Wind Turbine Structural Dynamics—A Review of the Principles for Modern Power Generation, Onshore and Offshore
,”
Wind Eng.
,
26
(
4
), pp.
211
222
.
35.
DNV-GL
,
2019
, “
Design of Offshore Steel Structures, General—LRFD Method
,”
Offshore Standard DNVGL-OS-C101:
, p.
113
.
36.
ISO
,
2007
, “
Petroleum and Natural gas Industries—Fixed Steel Offshore Structures
,”
International Standard ISO 19902
.
37.
NORSOK
,
2004
, “
Design of Steel Structures
,”
NORSOK Standard N-004
, p.
289
.
38.
do Prado
,
V. G.
,
Monteiro
,
B. D. F.
,
de Lima
,
B. S. L. P.
, and
Jacob
,
B. P.
,
2022
, “
Optimal Design of Mooring Systems for Floating Production Units Based on Metamodel-Assisted Differential Evolution
,”
Ocean Eng.
,
266
, p.
112752
.
39.
Goldberg
,
D. E.
,
1989
,
Genetic Algorithms in Search, Optimization and Machine Learning
,
Addison-Wesley
,
Reading, MA
.
40.
Man
,
K. F.
,
Tang
,
K. S.
, and
Kwong
,
S.
,
1996
, “
Genetic Algorithms: Concepts and Applications
,”
IEEE Trans. Ind. Eletronic.
,
43
(
5
), pp.
519
534
.
41.
Eshelman
,
L. J.
, and
Schaffer
,
J. D.
,
1993
, “
Real-Coded Genetic Algorithms and Interval-Schemata
,”
Found. Genet. Algorithms
,
2
, pp.
187
202
.
42.
Das
,
S.
, and
Suganthan
,
P. N.
,
2011
, “
Differential Evolution: A Survey of the State-of-the-Art
,”
IEEE Trans. Evol. Comput.
,
15
, pp.
4
31
.
43.
Wu
,
G.
,
Shen
,
X.
,
Li
,
H.
,
Chen
,
H.
,
Lin
,
A.
, and
Suganthan
,
P. N.
,
2018
, “
Ensemble of Differential Evolution Variants
,”
Inf. Sci.
,
423
, pp.
172
186
.
44.
Kenneth
,
V.
,
1999
,
Price, An Introduction to Differential Evolution, New Ideas in Optimization
,
McGraw-Hill Ltd
,
Maidenhead, UK
.
45.
Price
,
K.
,
Storn
,
R. M.
, and
Lampinen
,
J. A.
,
2006
,
Differential Evolution: A Practical Approach to Global Optimization
,
Springer Science & Business Media
,
Berlin/Heidelberg
.
46.
Back
,
T.
,
1996
,
Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolutionary Programming, Genetic Algorithms
,
Oxford University Press
,
Oxford
.
47.
Engelbrecht
,
A. P.
,
2005
,
Fundamentals of Computational Swarm Intelligence
,
John Wiley & Sons, Ltd
,
Hoboken, NJ
.
48.
Mezura-Montes
,
E.
, and
Coello Coello
,
C. A.
,
2011
, “
Constraint-Handling in Nature-Inspired Numerical Optimization: Past, Present and Future
,”
Swarm Evol. Comput.
,
1
(
4
), pp.
173
194
.
49.
Lemonge
,
A. C. C.
, and
Barbosa
,
H. J. C.
,
2004
, “
An Adaptive Penalty Scheme for Genetic Algorithms in Structural Optimization
,”
Int. J. Numer. Methods Eng.
,
59
(
5
), pp.
703
736
.
50.
Ho
,
P. Y.
, and
Shimizu
,
K.
,
2007
, “
Evolutionary Constrained Optimization Using an Addition of Ranking Method and a Percentage-Based Tolerance Value Adjustment Scheme
,”
Inf. Sci.
,
177
(
14
), pp.
2985
3004
.
51.
Vieira
,
I. N.
,
de Lima
,
B. S. L. P.
, and
Jacob
,
B. P.
,
2012
, “
Bio-Inspired Algorithms for the Optimization of Offshore Oil Production Systems
,”
Int. J. Numer. Methods Eng.
,
91
(
10
), pp.
1023
1044
.
52.
de Lima
,
B. S. L. P.
,
Jacob
,
B. P.
, and
Ebecken
,
N. F. F.
,
2005
, “
A Hybrid Fuzzy/Genetic Algorithm for the Design of Offshore Oil Production Risers
,”
Int. J. Numer. Methods Eng.
,
64
(
11
), pp.
1459
1482
.
53.
de Pina
,
A. A.
,
Albrecht
,
C. H.
,
de Lima
,
B. S. L. P.
, and
Jacob
,
B. P.
,
2011
, “
Tailoring the Particle Swarm Optimization Algorithm for the Design of Offshore Oil Production Risers
,”
Optim. Eng.
,
12
(
1–2
), pp.
215
235
.
54.
Monteiro
,
B. D. F.
,
de Pina
,
A. A.
,
Baioco
,
J. S.
,
Albrecht
,
C. H.
,
de Lima
,
B. S. L. P.
, and
Jacob
,
B. P.
,
2016
, “
Toward a Methodology for the Optimal Design of Mooring Systems for Floating Offshore Platforms Using Evolutionary Algorithms
,”
Mar. Syst. Ocean Technol.
,
11
(
3–4
), pp.
55
67
.
55.
Monteiro
,
B. D. F.
,
Baioco
,
J. S.
,
Albrecht
,
C. H.
,
de Lima
,
B. S. L. P.
, and
Jacob
,
B. P.
,
2021
, “
Optimization of Mooring Systems in the Context of an Integrated Design Methodology
,”
Mar. Struct.
,
75
, p.
102874
.
56.
de Lucena
,
R. R.
,
Baioco
,
J. S.
,
de Lima
,
B. S. L. P.
,
Albrecht
,
C. H.
, and
Jacob
,
B. P.
,
2014
, “
Optimal Design of Submarine Pipeline Routes by Genetic Algorithm With Different Constraint Handling Techniques
,”
Adv. Eng. Software
,
76
, pp.
110
124
.
57.
Baioco
,
J. S.
,
de Lima
M. H. A.
, Jr.
,
Albrecht
,
C. H.
,
de Lima
,
B. S. L. P.
,
Jacob
,
B. P.
, and
Rocha
,
D. M.
,
2018
, “
Optimal Design of Submarine Pipelines by a Genetic Algorithm With Embedded On-Bottom Stability Criteria
,”
Math. Probl. Eng.
,
2018
, pp.
1
21
.
58.
CEN
,
2002
, “
EN 10220—Seamless and Welded Steel Tubes—Dimensions and Masses per Unit Length
,”
European Committe for Standardization
, p.
9
.
59.
de Araújo Neto
,
E. D.
,
Rodriguez
,
W. S. M.
,
Ortega
,
A.
,
Corrêa
,
F. N.
,
de Lima
,
B. S. L. P.
, and
Jacob
,
B. P.
,
2020
, “
Evaluation of a Hybrid Representation to Model the Wind Turbine, Platform and Mooring Lines in the Analysis of Floating Offshore Wind Turbines
,”
Proceedings of the ASME 2020 39th International Conference on Ocean, Offshore and Arctic Engineering—OMAE 2020
,
Fort Lauderdale, FL
,
June 28–July 3
,
Offshore and Arctic Engineering
, pp.
1
9
.
60.
Passon
,
P.
, and
Branner
,
K.
,
2014
, “
Load Calculation Methods for Offshore Wind Turbine Foundations
,”
Ships Offshore Struct.
,
9
(
4
), pp.
433
499
.
61.
Yeter
,
B.
,
Garbatov
,
Y.
, and
Soares
,
C. G.
,
2015
, “
Fatigue Damage Assessment of Fixed Offshore Wind Turbine Tripod Support Structures
,”
Eng. Struct.
,
101
, pp.
518
528
.
62.
Wood
,
W. L.
,
Bossak
,
M.
, and
Zienkiewicz
,
O. C.
,
1980
, “
An Alpha Modification of Newmark’s Method
,”
Int. J. Numer. Methods Eng.
,
15
(
10
), pp.
1562
1566
.
63.
Jacob
,
B. P.
, and
Ebecken
,
N. F. F.
,
1994
, “
An Optimized Implementation of the Newmark/Newton-Raphson Algorithm for the Time Integration of Non-Linear Problems
,”
Commun. Numer. Methods Eng.
,
10
(
12
), pp.
983
992
.
64.
Jacob
,
B. P.
, and
Ebecken
,
N. F. F.
,
1993
, “
Adaptive Time Integration of Nonlinear Structural Dynamic Problems
,”
Eur. J. Mech. A Solids
,
12
(
2
), pp.
277
298
.
65.
DNV
,
2014
, “
Design of Offshore Wind Turbine Structures
,”
DNV-OS-J101
, p.
238
.
66.
Popko
,
W.
,
Vorpahl
,
F.
,
Zuga
,
A.
,
Kohlmeier
,
M.
,
Jonkman
,
J.
, and
Robertson
,
A.
,
2012
, “
Offshore Code Comparison Collaboration Continuation (OC4), Phase I—Results of Coupled Simulations of an Offshore Wind Turbine with Jacket Support Structure
,”
Proceedings of the Twenty-Second (2012) International Offshore and Polar Engineering Conference—ISOPE
,
Rhodes, Greece
,
June 17–22
, pp.
1
10
.
67.
IEA_WIND
, “
IEA Wind TCP Task 30—Offshore Code Comparison Collaboration, Continuation, With Correlation and Uncertainty
,” https://iea-wind.org/task30.
68.
IRENA
,
2021
,
World Energy Transitions Outlook: 1.5°C Pathway
,
International Renewable Energy Agency
,
Abu Dhabi
.
You do not currently have access to this content.