Abstract

Model testing is common in coastal and offshore engineering. The design of such model tests is important such that the maximal information of the underlying physics can be extrapolated with a limited amount of test cases. The design of experiments also requires considering the previous similar experimental results and the typical sea-states of the ocean environments. In this study, we develop a model test design strategy based on Bayesian sampling for a classic problem in ocean engineering—nonlinear wave loading on a vertical cylinder. The new experimental design strategy is achieved through a GP-based surrogate model, which considers the previous experimental data as the prior information. The metocean data are further incorporated into the experimental design through a modified acquisition function. We perform a new experiment, which is mainly designed by data-driven methods, including several critical parameters such as the size of the cylinder and all the wave conditions. We examine the performance of such a method when compared to traditional experimental design based on manual decisions. This method is a step forward to a more systematic way of approaching test designs with marginally better performance in capturing the higher-order force coefficients. The current surrogate model also made several “interpretable” decisions which can be explained with physical insights.

References

1.
Kallehave
,
D.
,
Byrne
,
B. W.
,
LeBlanc Thilsted
,
C.
, and
Mikkelsen
,
K. K.
,
2015
, “
Optimization of Monopiles for Offshore Wind Turbines
,”
Philos. Trans. Royal Soc.
,
373
(
2035
), p.
20140100
.
2.
Chaplin
,
J.
,
Rainey
,
R.
, and
Yemm
,
R.
,
1997
, “
Ringing of a Vertical Cylinder in Waves
,”
J. Fluid. Mech.
,
350
, pp.
119
147
.
3.
Grue
,
J.
, and
Huseby
,
M.
,
2002
, “
Higher-Harmonic Wave Forces and Ringing of Vertical Cylinders
,”
Appl. Ocean. Res.
,
24
(
4
), pp.
203
214
.
4.
Riise
,
B. H.
,
Grue
,
J.
,
Jensen
,
A.
, and
Johannessen
,
T. B.
,
2018
, “
A Note on the Secondary Load Cycle for a Monopile in Irregular Deep Water Waves
,”
J. Fluid Mech.
,
849
, p.
R1
.
5.
Kim
,
M.-H.
, and
Yue
,
D. K.
,
1989
, “
The Complete Second-Order Diffraction Solution for an Axisymmetric Body Part 1. Monochromatic Incident Waves
,”
J. Fluid Mech.
,
200
, pp.
235
264
.
6.
Huang
,
J. B.
, and
Eatock Taylor
,
R.
,
1996
, “
Semi-analytical Solution for Second-Order Wave Diffraction by a Truncated Circular Cylinder in Monochromatic Waves
,”
J. Fluid Mech.
,
319
, pp.
171
196
.
7.
Faltinsen
,
O. M.
,
Newman
,
J. N.
, and
Vinje
,
T.
,
1995
, “
Nonlinear Wave Loads on a Slender Vertical Cylinder
,”
J. Fluid Mech.
,
289
, pp.
179
198
.
8.
Molin
,
B.
,
1995
, “
Third-harmonic Wave Diffraction by a Vertical Cylinder
,”
J. Fluid Mech.
,
302
, pp.
203
229
.
9.
Huseby
,
M.
, and
Grue
,
J.
,
2000
, “
An Experimental Investigation of Higher-harmonic Wave Forces on a Vertical Cylinder
,”
J. Fluid Mech.
,
414
, pp.
75
103
.
10.
Kristiansen
,
T.
, and
Faltinsen
,
O. M.
,
2017
, “
Higher Harmonic Wave Loads on a Vertical Cylinder in Finite Water Depth
,”
J. Fluid Mech.
,
833
, pp.
773
805
.
11.
Mj
,
D.
,
McAllister
,
M. L.
,
Bredmose
,
H.
,
Adcock
,
T. A. A.
, and
Taylor
,
P. H.
,
2023
, “
Harmonic Structure of Wave Loads on a Surface Piercing Column in Directionally Spread and Unidirectional Random Seas
,”
J. Ocean Eng. Mar. Energy.
,
9
, pp.
415
433
.
12.
Chen
,
L. F.
,
Zang
,
J.
,
Taylor
,
P. H.
,
Sun
,
L.
,
Morgan
,
G.
,
Grice
,
J.
,
Orszaghova
,
J.
, and
Ruiz
,
M. T.
,
2018
, “
An Experimental Decomposition of Nonlinear Forces on a Surface-Piercing Column: Stokes-Type Expansions of the Force Harmonics
,”
J. Fluid Mech.
,
848
, pp.
42
77
.
13.
Feng
,
X.
,
Taylor
,
P. H.
,
Dai
,
S.
,
Day
,
A. H.
,
Willden
,
R. H. J.
, and
Adcock
,
T. A. A.
,
2020
, “
Experimental Investigation of Higher Harmonic Wave Loads and Moments on a Vertical Cylinder by a Phase-Manipulation Method
,”
Coast. Eng.
,
160
, p.
103747
.
14.
Mockutė
,
A.
,
Marino
,
E.
,
Lugni
,
C.
, and
Borri
,
C.
,
2019
, “
Comparison of Nonlinear Wave-Loading Models on Rigid Cylinders in Regular Waves
,”
Energies
,
12
(
21
), p.
4022
.
15.
Stansberg
,
C. T.
,
Huse
,
E.
,
Krokstad
,
J. R.
, and
Lehn
,
E.
,
1995
, “
Experimental Study of Non-Linear Loads on Vertical Cylinders in Steep Random Waves
,”
The Fifth International Offshore and Polar Engineering Conference, The Hague, The Netherlands
,
June 11–16
, p.
824
.
16.
Riise
,
B. H.
,
Grue
,
J.
,
Jensen
,
A.
, and
Johannessen
,
T. B.
,
2018
, “
High Frequency Resonant Response of a Monopile in Irregular Deep Water Waves
,”
J. Fluid. Mech.
,
853
, pp.
564
586
.
17.
Marino
,
E.
,
Nguyen
,
H.
,
Lugni
,
C.
,
Manuel
,
L.
, and
Borri
,
C.
,
2015
, “
Irregular Nonlinear Wave Simulation and Associated Loads on Offshore Wind Turbines
,”
ASME J. Offshore Mech. Arct.
,
137
(
2
), p.
021901
.
18.
Ghadirian
,
A.
and
Bredmose
,
H.
,
2020
, “
Detailed Force Modelling of the Secondary Load Cycle
,”
J. Fluid Mech.
,
889
, p. A21.
19.
Mohamad
,
M. A.
, and
Sapsis
,
T. P.
,
2018
, “
Sequential Sampling Strategy for Extreme Event Statistics in Nonlinear Dynamical Systems
,”
Proc. Natl. Acad. Sci. U. S. A.
,
115
(
44
), pp.
11138
11143
.
20.
Sapsis
,
T. P.
,
2020
, “
Output-Weighted Optimal Sampling for Bayesian Regression and Rare Event Statistics Using Few Samples
,”
Proc. R. Soc. A Math. Phys. Eng. Sci.
,
476
(
2234
), p.
20190834
.
21.
Tang
,
T.
, and
Adcock
,
T. A. A.
,
2022
, “
Estimating Space–Time Wave Statistics Using a Sequential Sampling Method and Gaussian Process Regression
,”
Appl. Ocean Res.
,
122
, p.
103127
.
22.
Gong
,
X.
, and
Pan
,
Y.
,
2022
, “
Sequential Bayesian Experimental Design for Estimation of Extreme-event Probability in Stochastic Input-to-Response Systems
,”
Comput. Methods in Appl. Mech. Eng.
,
395
, p.
114979
.
23.
Boccotti
,
P.
,
1983
, “
Some New Results on Statistical Properties of Wind Waves
,”
Appl. Ocean Res.
,
5
(
3
), pp.
134
140
.
24.
Lindgren
,
G.
,
1970
, “
Some Properties of a Normal Process Near a Local Maximum
,”
Ann. Math. Stat.
,
41
(
6
), pp.
1870
1883
.
25.
Hasselmann
,
K.
,
Barnett
,
T. P.
,
Bouws
,
E.
,
Carlson
,
H.
,
Cartwright
,
D. E.
,
Enke
,
K.
,
Ewing
,
J.
, et al.
1973
, “
Measurements of Wind-Wave Growth and Swell Decay During the Joint North Sea Wave Project (JONSWAP)
,”
Ergaenzungsheft Deutschen Hydrographischen Z., Reihe A.
26.
Lo
,
E.
, and
Mei
,
C. C.
,
1985
, “
A Numerical Study of Water-Wave Modulation Based on a Higher-Order Nonlinear Schrödinger Equation
,”
J. Fluid Mech.
,
150
, pp.
395
416
.
27.
Baldock
,
T. E.
,
Swan
,
C.
, and
Taylor
,
P. H.
,
1996
, “
A Laboratory Study of Nonlinear Surface Waves on Water
,”
Philos. Trans. Royal Soc. A Math. Phys. Eng. Sci.
,
354
(
1707
), pp.
649
676
.
28.
Adcock
,
T. A. A.
, and
Taylor
,
P. H.
,
2009
, “
Focusing of Unidirectional Wave Groups on Deep Water: An Approximate Nonlinear Schrödinger Equation-Based Model
,”
Proc. R. Soc. A Math. Phys. Eng. Sci.
,
465
(
2110
), p.
3083 LP
.
29.
Janssen
,
T. T.
, and
Herbers
,
T. H. C.
,
2009
, “
Nonlinear Wave Statistics in a Focal Zone
,”
J. Phys. Oceanogr.
,
39
(
8
), pp.
1948
1964
.
30.
Hersbach
,
H.
,
Bell
,
B.
,
Berrisford
,
P.
,
Hirahara
,
S.
,
Horányi
,
A.
,
Muñoz-Sabater
,
J.
,
Nicolas
,
J.
, et al.
2020
, “
The Era5 Global Reanalysis
,”
Q. J. R. Meteorol. Soc.
,
146
(
730
), pp.
1999
2049
.
31.
Wang
,
S.
,
Larsen
,
T. J.
, and
Bredmose
,
H.
,
2021
, “
Ultimate Load Analysis of a 10 MW Offshore Monopile Wind Turbine Incorporating Fully Nonlinear Irregular Wave Kinematics
,”
Mar. Struct.
,
76
, p.
102922
.
32.
Fitzgerald
,
C. J.
,
Taylor
,
P. H.
,
Eatock Taylor
,
R.
,
Grice
,
J.
, and
Zang
,
J.
,
2014
, “
Phase Manipulation and the Harmonic Components of Ringing Forces on a Surface-Piercing Column
,”
Proc. R. Soc. A
,
470
(
2168
), p.
20130847
.
33.
Durbin
,
J.
, and
Koopman
,
S. J.
,
2012
,
Time Series Analysis by State Space Methods
, Vol.
38
,
Oxford University Press
,
Oxford
.
34.
Kocijan
,
J.
,
Murray-Smith
,
R.
,
Rasmussen
,
C. E.
, and
Girard
,
A.
,
2004
, “
Gaussian Process Model Based Predictive Control
,”
Proceedings of the 2004 American Control Conference
,
Boston, MA
, Vol. 3, IEEE, pp.
2214
2219
.
35.
Hewing
,
L.
,
Kabzan
,
J.
, and
Zeilinger
,
M. N.
,
2019
, “
Cautious Model Predictive Control Using Gaussian Process Regression
,”
IEEE Trans. Control Syst. Technol.
,
28
(
6
), pp.
2736
2743
.
36.
Gramstad
,
O.
,
Agrell
,
C.
,
Bitner-Gregersen
,
E.
,
Guo
,
B.
,
Ruth
,
E.
, and
Vanem
,
E.
,
2020
, “
Sequential Sampling Method Using Gaussian Process Regression for Estimating Extreme Structural Response
,”
Mar. Struct.
,
72
, p.
102780
.
37.
Rasmussen
,
C. E.
, and
Williams
,
C.
,
2006
, “Gaussian Processes for Machine Learning, Ser. Adaptive Computation and Machine Learning,”
MIT Press
,
Cambridge, MA
,
Vol. 38
, pp.
715
719
.
38.
Rodriguez
,
J. D.
,
Perez
,
A.
, and
Lozano
,
J. A.
,
2009
, “
Sensitivity Analysis of k-Fold Cross Validation in Prediction Error Estimation
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
32
(
3
), pp.
569
575
.
39.
Blanchard
,
A.
, and
Sapsis
,
T.
,
2021
, “
Bayesian Optimization with Output-Weighted Optimal Sampling
,”
J. Comput. Phys.
,
425
, p.
109901
.
40.
Pickering
,
E.
,
Guth
,
S.
,
Karniadakis
,
G. E.
, and
Sapsis
,
T. P.
,
2022
, “
Discovering and Forecasting Extreme Events Via Active Learning in Neural Operators
,”
Nat. Comput. Sci
,
2
(
12
), pp.
823
833
.
41.
Onorato
,
M.
,
Waseda
,
T.
,
Toffoli
,
A.
,
Cavaleri
,
L.
,
Gramstad
,
O.
,
Janssen
,
P. A. E. M.
,
Kinoshita
,
T.
, et al.
2009
, “
Statistical Properties of Directional Ocean Waves: The Role of the Modulational Instability in the Formation of Extreme Events
,”
Phys. Rev. Lett
,
102
(
11
), pp.
114502
.
You do not currently have access to this content.