Abstract

Artificial reefs (ARs) are one of the key anthropogenic constructs used to restore offshore fishery resources and recover the ecological environment. However, many ARs lose their stability and function due to scour. To ensure the functional effect of ARs, it is of great significance to study the factors causing AR instability, such as burying caused by scour under different flow conditions. In present study, a three-dimensional numerical model is established in FLOW-3D to study the local scour characteristics around an AR in steady currents. Reynolds-averaged Navier–Stokes (RANS) equations, closed with the renormalization group (RNG) k–ɛ turbulence model, are established to simulate a stable flow field around one AR. The simulation results are compared with previous experimental results, exhibiting good agreement. The effects of the opening number and the incident angles of ARs on the scour characteristics, equilibrium scour depth, and maximum scour volume were also investigated. The results indicate that the scour depth and scour volume decreased as the opening number increased. Furthermore, empirical equations are proposed herein based on the numerical results derived for the effects of the AR opening number on the equilibrium scour depth and maximum scour volume. A change in the incident angle affected the bed shear stress at the most-upstream corner of the AR. The greater the bed shear stress was, the more intense the scour was. In this study, we provide theoretical support and practical guidance for the optimized engineering design and construction of ARs.

References

1.
McCauley
,
D. J.
,
Pinsky
,
M. L.
,
Palumbi
,
S. R.
,
Estes
,
J. A.
,
Joyce
,
F. H.
, and
Warner
,
R. R.
,
2015
, “
Marine Defaunation: Animal Loss in the Global Ocean
,”
Science
,
347
(
6219
), p.
1255641
.
2.
Loh
,
T. L.
,
Tanzil
,
J. T. I.
, and
Chou
,
L. M.
,
2006
, “
Preliminary Study of Community Development and Scleractinian Recruitment on Fibreglass Artificial Reef Units in the Sedimented Waters of Singapore
,”
Aquat. Conserv.
,
16
(
1
), pp.
61
76
.
3.
Ng
,
C. S. L.
,
Toh
,
T. C.
, and
Chou
,
L. M.
,
2017
, “
Artificial Reefs as a Reef Restoration Strategy in Sediment-Affected Environments: Insights From Long-Term Monitoring
,”
Aquat. Conserv.
,
27
(
5
), pp.
976
985
.
4.
Lok
,
A.
,
Metin
,
C.
,
Ulas
,
A.
,
Duzbastilar
,
F. O.
, and
Tokac
,
A.
,
2002
, “
Artificial Reefs in Turkey
,”
ICES J. Mar. Sci.
,
59
, pp.
192
195
.
5.
Kim
,
T.
,
Baek
,
S.
,
Kwon
,
Y.
,
Lee
,
J.
,
Cha
,
S. M.
, and
Kwon
,
S.
,
2020
, “
Improved Coastal Erosion Prevention Using a Hybrid Method with an Artificial Coral Reef: Large-Scale 3D Hydraulic Experiment
,”
Water
,
12
(
10
), p.
2801
.
6.
López
,
I.
,
Tinoco
,
H.
,
Aragonés
,
L.
, and
García-Barba
,
J.
,
2016
, “
The Multifunctional Artificial Reef and Its Role in the Defence of the Mediterranean Coast
,”
Sci. Total Environ.
,
550
, pp.
910
923
.
7.
Westerberg
,
V.
,
Jacobsen
,
J. B.
, and
Lifran
,
R.
,
2013
, “
The Case for Offshore Wind Farms, Artificial Reefs and Sustainable Tourism in the French Mediterranean
,”
Tour. Manag.
,
34
, pp.
172
183
.
8.
Tang
,
Y. L.
,
Wei
,
S. W.
,
Yang
,
M. D.
,
Wang
,
X. X.
, and
Zhao
,
F. F.
,
2022
, “
Experimental Investigation of Local Scour Around Artificial Reefs in Steady Currents
,”
J. Ocean Univ. China
,
21
(
2
), pp.
1
12
.
9.
Duezbastilar
,
F. O.
,
Lok
,
A.
,
Ulas
,
A.
, and
Metin
,
C.
,
2006
, “
Recent Developments on Artificial Reef Applications in Turkey: Hydraulic Experiments
,”
Bull. Mar. Sci.
,
78
(
1
), pp.
195
202
.
10.
Manoukian
,
S.
,
Fabi
,
G.
, and
Naar
,
D. F.
,
2011
, “
Multibeam Investigation of an Artificial Reef Settlement in the Adriatic Sea (Italy) 33 Years After Its Deployment
,”
Braz. J. Oceanogr.
,
59
(
spe1
), pp.
145
153
.
11.
Li
,
D.
,
Tang
,
C.
,
Xia
,
C.
, and
Zhang
,
H.
,
2017
, “
Acoustic Mapping and Classification of Benthic Habitat Using Unsupervised Learning in Artificial Reef Water
,”
Estuarine Coastal Shelf Sci.
,
185
, pp.
11
21
.
12.
Than
,
V. C.
,
Somi
,
J.
, and
Won
,
B. N.
,
2021
, “
Measurement and Prediction of the Initial Settlement of Cube-Type Artificial Reefs Caused by Free-Fall Installation Using a Laboratory-Scale Experiment, Regression Analysis, and Numerical Collision Analysis
,”
Ocean Eng.
,
223
, p.
108643
.
13.
Kheawwongjan
,
A.
, and
Kim
,
D. S.
,
2012
, “
Present Status and Prospects of Artificial Reefs in Thailand
,”
Ocean Coast. Manage.
,
57
, pp.
21
33
.
14.
Lee
,
M. O.
,
Otake
,
S.
, and
Kim
,
J. K.
,
2018
, “
Transition of Artificial Reefs (ARs) Research and Its Prospects
,”
Ocean Coast. Manage.
,
154
, pp.
55
65
.
15.
Ma
,
L. L.
,
Wang
,
L. Z.
,
Guo
,
Z.
,
Jiang
,
H. Y.
, and
Gao
,
Y. Y.
,
2018
, “
Time Development of Scour Around Pile Groups in Tidal Currents
,”
Ocean Eng.
,
163
, pp.
400
418
.
16.
Yang
,
Y. L.
,
Qi
,
M. L.
,
Wang
,
X.
, and
Li
,
J. Z.
,
2020
, “
Experimental Study of Scour Around Pile Groups in Steady Flows
,”
Ocean Eng.
,
195
, p.
106651
.
17.
Yao
,
W. D.
,
Draper
,
S.
,
An
,
H.
,
Cheng
,
L.
,
Harris
,
J. M.
, and
Whitehouse
,
R. J. S.
,
2020
, “
Effect of a Skirted Mudmat Foundation on Local Scour Around a Submerged Structure
,”
Ocean Eng.
,
218
, p.
108127
.
18.
Jiang
,
Z. Y.
,
Liang
,
Z. L.
,
Zhu
,
L. X.
,
Guo
,
Z. S.
, and
Tang
,
Y. L.
,
2020
, “
Effect of Hole Diameter of Rotary-Shaped Artificial Reef on Flow Field
,”
Ocean Eng.
,
197
, p.
106917
.
19.
Jiang
,
Z. Y.
,
Liang
,
Z. L.
,
Zhu
,
L. X.
, and
Liu
,
Y.
,
2016
, “
Numerical Simulation of Effect of Guide Plate on Flow Field of Artificial Reef
,”
Ocean Eng.
,
116
, pp.
236
241
.
20.
Komyakova
,
V.
, and
Swearer
,
S. E.
,
2019
, “
Contrasting Patterns in Habitat Selection and Recruitment of Temperate Reef Fishes among Natural and Artificial Reefs
,”
Mar. Environ. Res.
,
143
, pp.
71
81
.
21.
Kim
,
D. H.
,
Woo
,
J. H.
,
Yoon
,
H. S.
, and
Na
,
W. B.
,
2014
, “
Wake Lengths and Structural Responses of Korean General Artificial Reefs
,”
Ocean Eng.
,
92
, pp.
83
91
.
22.
Kim
,
D. H.
,
Woo
,
J. H.
,
Yoon
,
H. S.
, and
Na
,
W. B.
,
2016
, “
Efficiency, Tranquillity and Stability Indices to Evaluate Performance in the Artificial Reef Wake Region
,”
Ocean Eng.
,
122
, pp.
253
261
.
23.
Wang
,
G.
,
Wan
,
R.
,
Wang
,
X. X.
,
Zhao
,
F. F.
,
Lan
,
X. Z.
,
Cheng
,
H.
,
Tang
,
W. Y.
, and
Guan
,
Q. L.
,
2018
, “
Study on the Influence of Cut-Opening Ratio, Cut-Opening Shape, and Cut-Opening Number on the Flow Field of a Square Artificial Reef
,”
Ocean Eng.
,
162
, pp.
341
352
.
24.
Zheng
,
Y. H.
,
Kuang
,
C. P.
,
Zhang
,
J. B.
,
Gu
,
J.
,
Chen
,
K.
, and
Liu
,
X.
,
2022
, “
Current and Turbulence Characteristics of Perforated Box-Type Artificial Reefs in a Constant Water Depth
,”
Ocean Eng.
,
244
, p.
110359
.
25.
Kimura
,
H.
,
Ingsrisawang
,
V.
, and
Ban
,
M.
,
1962
, “
A Study on Local Scour of Cylindrical Artificial Fish Reefs
,”
Vox Sang.
,
7
(
3
), pp.
305
314
.
26.
Kim
,
D. K.
,
Suh
,
S. H.
,
Cho
,
J. K.
,
Kim
,
C. G.
,
Choi
,
I.-H.
, and
Kim
,
B. S.
,
2010
, “
Settlement Characteristics of Square Reefs Installed on Soft Seafloor Ground
,”
J. Korean Soc. Mar. Eng.
,
34
(
1
), pp.
163
167
.
27.
Kim
,
D. K.
,
Kim
,
W. K.
,
Son
,
Y. S.
,
Yoon
,
J. T.
,
Gong
,
Y.-G.
,
Kim
,
Y.-D.
, and
Lee
,
J. H.
,
2008
, “
Settlement Characteristics of Three Type of Artificial Reefs on Sandy Bottom in the Eastern Coast of Korea
,”
J. Korean. Soc. Mar. Eng.
,
32
(
2
), pp.
359
364
.
28.
Kim
,
D. K.
,
Lee
,
J. Y.
,
Suh
,
S. H.
,
Kim
,
C. G.
,
Cho
,
J.-K.
, and
Cha
,
B. Y.
,
2009
, “
Scouring and Accumulation by Tidal Currents Around Square Artificial Reefs Installed at Geogeom Waterway
,”
J. Korean. Soc. Mar. Eng.
,
33
(
8
), pp.
1275
1280
.
29.
Yun
,
D. H.
, and
Kim
,
Y. T.
,
2018
, “
Experimental Study on Settlement and Scour Characteristics of Artificial Reef With Different Reinforcement Type and Soil Type
,”
Geotext Geomembr.
,
46
(
4
), pp.
448
454
.
30.
Ding
,
L.
,
Wang
,
J. M.
,
Tang
,
Z. C.
,
Chen
,
H. G.
, and
Jia
,
X. P.
,
2019
, “
Experimental Study and Analysis of Local Scouring of Artificial Reef on Silty Sand Bed Under Steady Currents
,”
J. Fish. China
,
3
, p.
9
.
31.
Yang
,
F.
,
Qu
,
L. L.
,
Tang
,
G. Q.
, and
Lu
,
L.
,
2021
, “
Local Scour Around a Porous Surface-Piercing Square Monopile in Steady Current
,”
Ocean Eng.
,
223
, p.
108716
.
32.
Zhao
,
M.
,
Zhu
,
X. S.
,
Cheng
,
L.
, and
Teng
,
B.
,
2012
, “
Experimental Study of Local Scour Around Subsea Caissons in Steady Currents
,”
Coastal Eng.
,
60
, pp.
30
40
.
33.
Yu
,
P.
,
Hu
,
R. G.
,
Yang
,
J. M.
, and
Liu
,
H. J.
,
2020
, “
Numerical Investigation of Local Scour Around USAF With Different Hydraulic Conditions Under Currents and Waves
,”
Ocean Eng.
,
213
, p.
107696
.
34.
Zhang
,
Q.
,
Zhou
,
X. L.
, and
Wang
,
J. H.
,
2017
, “
Numerical Investigation of Local Scour Around Three Adjacent Piles With Different Arrangements Under Current
,”
Ocean Eng.
,
142
, pp.
625
638
.
35.
Bordbar
,
A.
,
Sharifi
,
S.
, and
Hemida
,
H.
,
2021
, “
Investigation of the Flow Behaviour and Local Scour Around Single Square-Shaped Cylinders at Different Positions in Live-Bed
,”
Ocean Eng.
,
238
, p.
109772
.
36.
Khosronejad
,
A.
,
Kang
,
S.
, and
Sotiropoulos
,
F.
,
2012
, “
Experimental and Computational Investigation of Local Scour Around Bridge Piers
,”
Adv. Water Resour.
,
37
, pp.
73
85
.
37.
Kim
,
H. S.
,
Nabi
,
M.
,
Kimura
,
I.
, and
Shimizu
,
Y.
,
2014
, “
Numerical Investigation of Local Scour at Two Adjacent Cylinders
,”
Adv. Water. Resour.
,
70
, pp.
131
147
.
38.
Xu
,
C. H.
,
Huang
,
Z. H.
, and
Yao
,
Y.
,
2019
, “
A Wave-Flume Study of Scour at a Pile Breakwater: Solitary Waves
,”
Appl. Ocean Res.
,
82
, pp.
89
108
.
39.
Yoon
,
H. S.
,
Kim
,
D. H.
, and
Na
,
W. B.
,
2016
, “
Estimation of Effective Usable and Burial Volumes of Artificial Reefs and the Prediction of Cost-Effective Management
,”
Ocean Coast. Manage.
,
120
, pp.
135
147
.
40.
Hirt
,
C. W.
, and
Nichols
,
B. D.
,
1981
, “
Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries
,”
J. Comput. Phys.
,
39
(
1
), pp.
201
225
.
41.
Nielsen
,
A. W.
,
Liu
,
X.
,
Sumer
,
B. M.
, and
Fredsøe
,
J.
,
2013
, “
Flow and Bed Shear Stresses in Scour Protections Around a Pile in a Current
,”
Coast Eng.
,
72
, pp.
20
38
.
42.
Yakhot
,
V.
, and
Smith
,
L. M.
,
1992
, “
The Renormalization Group, the ɛ-Expansion and Derivation of Turbulence Models
,”
J. Sci. Comput.
,
7
(
1
), pp.
35
61
.
43.
Zhang
,
M. L.
,
Li
,
C. W.
, and
Shen
,
Y. M.
,
2010
, “
A 3D Non-Linear K-Epsilon Turbulent Model for Prediction of Flow and Mass Transport in Channel With Vegetation
,”
Appl. Math. Model.
,
34
(
4
), pp.
1021
1031
.
44.
Soulsby
,
R.
,
1997
,
Dynamics of Marine Sands
,
Thomas Telford Publishing
,
London
.
45.
Cheng
,
Z. Y.
,
Koken
,
M.
, and
Constantinescu
,
G.
,
2018
, “
Approximate Methodology to Account for Effects of Coherent Structures on Sediment Entrainment in RANS Simulations with a Movable Bed and Applications to Pier Scour
,”
Adv. Water Resour.
,
120
, pp.
65
82
.
You do not currently have access to this content.