Abstract

In the present work, an extensive verification and validation study is performed to evaluate the accuracy and credibility for computational fluid dynamic (CFD) simulations of the hydrodynamic responses of a semi-submersible floating offshore wind turbine (FOWT) platform under bichromatic waves and random waves. A dynamic mooring model is coupled with the CFD code to accurately simulate the mooring system. For the bichromatic wave cases, the surge, heave, and pitch response amplitude operators (RAOs) at wave frequencies, mean surge offset and mean surge force of the semi-submersible platform are investigated. The numerical uncertainties of the above metrics are quantified, which are primarily sourced from the discretization uncertainty. For the random wave cases, the surge, heave, and pitch power spectral density (PSD) sums in wave frequency range and low frequency range are validated against the experimental results. The numerical uncertainty derived from the bichromatic wave cases is applied in the validation of the random wave cases. The PSD sums in wave frequency range have achieved the validation within the validation uncertainty. Though the PSD sums in low-frequency range are under-predicted, the results with the utilization of the CFD code agree more with the experimental value than the results from mid-fidelity tools.

References

1.
Wang
,
L.
,
Robertson
,
A.
,
Jonkman
,
J.
,
Yu
,
Y.-H.
,
Koop
,
A.
,
Nadal
,
A. B.
,
Li
,
H.
, et al.,
2021
, “
OC6 Phase Ib: Validation of the CFD Predictions of Difference-Frequency Wave Excitation on a FOWT Semisubmersible
,”
Ocean Eng.
,
241
, p.
110026
.
2.
Roache
,
P. J.
,
2009
,
Fundamentals of Verification and Validation
,
Hermosa Publishers
.
3.
Wang
,
Y.
,
Chen
,
H.-C.
,
Koop
,
A.
, and
Vaz
,
G.
,
2021
, “
Verification and Validation of CFD Simulations for Semi-Submersible Floating Offshore Wind Turbine Under Pitch Free-Decay Motion
,”
Ocean Eng.
,
242
, p.
109993
.
4.
Burmester
,
S.
, and
Vaz
,
G.
,
2020
, “
Towards Credible CFD Simulations for Floating Offshore Wind Turbines
,”
Ocean Eng.
,
209
, p.
107237
.
5.
Eça
,
L.
, and
Hoekstra
,
M.
,
2014
, “
A Procedure for the Estimation of the Numerical Uncertainty of CFD Calculations Based on Grid Refinement Studies
,”
J. Comput. Phys.
,
262
, pp.
104
130
.
6.
Burmester
,
S.
,
Vaz
,
G.
, and
Gueydon
,
S.
,
2020
, “
Investigation of a Semi-Submersible Floating Wind Turbine in Surge Decay Using CFD
,”
Ship Technol. Res.
,
67
(
1
), pp.
2
14
.
7.
Oberhagemann
,
J.
,
2016
, “
On Prediction of Wave-Induced Loads and Vibration of Ship Structures With Finite Volume Fluid Dynamic Methods
,” PhD thesis,
Universität Duisburg-Essen
.
8.
Xing
,
T.
, and
Stern
,
F.
,
2010
, “
Factors of Safety for Richardson Extrapolation
,”
ASME J. Fluids Eng.
,
132
(
6
), p.
061403
.
9.
Wang
,
Y.
,
Chen
,
H.-C.
,
Koop
,
A.
, and
Vaz
,
G.
,
2022
, “
Hydrodynamic Response of a FOWT Semi-Submersible Under Regular Waves Using CFD: Verification and Validation
,”
Ocean Eng.
,
258
, p.
111742
.
10.
Wang
,
L.
,
Robertson
,
A.
,
Jonkman
,
J.
, and
Yu
,
Y.-H.
,
2020
, “
Uncertainty Assessment of CFD Investigation of the Nonlinear Difference-Frequency Wave Loads on a Semisubmersible FOWT Platform
,”
Sustainability
,
13
(
1
), p.
64
.
11.
Vaz
,
G.
,
Jaouen
,
F.
, and
Hoekstra
,
M.
,
2009
, “
Free-Surface Viscous Flow Computations: Validation of URANS Code FreSCo
,”
International Conference on Offshore Mechanics and Arctic Engineering
,
Honolulu, HI
,
May 31–June 5
, Vol. 5, ASMEDC, pp.
425
437
.
12.
Huang
,
H.
, and
Chen
,
H.-C.
,
2020
, “
Investigation of Mooring Damping Effects on Vortex-Induced Motion of a Deep Draft Semi-Submersible by Coupled CFD-FEM Analysis
,”
Ocean Eng.
,
210
, p.
107418
.
13.
Patankar
,
S. V.
,
2018
,
Numerical Heat Transfer and Fluid Flow
,
CRC Press
,
Boca Raton, FL
.
14.
Klaij
,
C.
,
Hoekstra
,
M.
, and
Vaz
,
G.
,
2018
, “
Design, Analysis and Verification of a Volume-of-Fluid Model With Interface-Capturing Scheme
,”
Comput. Fluids
,
170
, pp.
324
340
.
15.
Hasselmann
,
K. F.
,
Barnett
,
T. P.
,
Bouws
,
E.
,
Carlson
,
H.
,
Cartwright
,
D. E.
,
Eake
,
K.
, and
Euring
,
J.
,
1973
, “
Measurements of Wind-Wave Growth and Swell Decay During the Joint North Sea Wave Project (JONSWAP)
,”
Deut. Hydrogr. Z.
,
8
, pp.
1
95
.
16.
Rosetti
,
G.
,
2015
, “
Improvements in the Numerical Modeling of Turbulence and Fluid–Structure Interaction for the Vortex-Induced Vibrations of a Rigid Cylinder
,” PhD thesis,
University of São Paulo
.
17.
Chen
,
X.
,
2002
, “
Studies on Dynamic Interaction Between Deep-Water Floating Structures and Their Mooring/Tendon Systems
,” PhD thesis,
Texas A&M University
.
18.
Ern
,
A.
, and
Guermond
,
J.-L.
,
2013
,
Theory and Practice of Finite Elements
, Vol. 159,
Springer Science & Business Media
.
19.
Newmark
,
N. M.
,
1959
, “
A Method of Computation for Structural Dynamics
,”
J. Eng. Mech. Div.
,
85
(
3
), pp.
67
94
.
20.
Eça
,
L.
, and
Hoekstra
,
M.
,
2009
, “
Evaluation of Numerical Error Estimation Based on Grid Refinement Studies With the Method of the Manufactured Solutions
,”
Comput. Fluids
,
38
(
8
), pp.
1580
1591
.
21.
Brouwer
,
J.
,
Tukker
,
J.
,
Klinkenberg
,
Y.
, and
van Rijsbergen
,
M.
,
2019
, “
Random Uncertainty of Statistical Moments in Testing: Mean
,”
Ocean Eng.
,
182
, pp.
563
576
.
22.
Lemaire
,
S.
, and
Klapwijk
,
M.
,
2021
, “
pyTST
,” Jan.
23.
Eça
,
L.
, and
Hoekstra
,
M.
,
2020
, “
Verification Tools: Marin
,” https://www.marin.nl/en/research/free-resources/verification-and-validation/verification-tools
24.
Eça
,
L.
,
Vaz
,
G.
,
Toxopeus
,
S. L.
, and
Hoekstra
,
M.
,
2019
, “
Numerical Errors in Unsteady Flow Simulations
,”
J. Verif. Valid. Uncertain. Quantif.
,
4
(
2
).
25.
Coleman
,
H. W.
, and
Stern
,
F.
,
1997
, “
Uncertainties and CFD Code Validation
,”
ASME J. Fluids Eng.
,
119
(
4
), pp.
795
803
.
26.
Katsuno
,
E. T.
,
Lidtke
,
A. K.
,
Düz
,
B.
,
Rijpkema
,
D.
,
Dantas
,
J. L.
, and
Vaz
,
G.
,
2021
, “
Estimating Parameter and Discretization Uncertainties Using a Laminar– Turbulent Transition Model
,”
Comput. Fluids
,
230
, p.
105129
.
27.
Robertson
,
A.
,
Bachynski
,
E. E.
,
Gueydon
,
S.
,
Wendt
,
F.
, and
Schünemann
,
P.
,
2020
, “
Total Experimental Uncertainty in Hydrodynamic Testing of a Semisubmersible Wind Turbine, Considering Numerical Propagation of Systematic Uncertainty
,”
Ocean Eng.
,
195
, p.
106605
.
28.
Sriram
,
V.
,
Agarwal
,
S.
, and
Schlurmann
,
T.
,
2021
, “
Laboratory Study on Steep Wave Interactions With Fixed and Moving Cylinder
,”
Int. J. Offshore Polar Eng.
,
31
(
1
), pp.
19
26
.
29.
Sriram
,
V.
,
Schlurmann
,
T.
, and
Schimmels
,
S.
,
2015
, “
Focused Wave Evolution Using Linear and Second Order Wavemaker Theory
,”
Appl. Ocean Res.
,
53
, pp.
279
296
.
30.
Yan
,
S.
,
Ma
,
Q.
,
Asnim
,
W.
,
Sulaiman
,
Z.
, and
Sun
,
H.
,
2020
, “
Comparative Study on Focusing Wave Interaction With Cylinder Using QALE-FEM and QaleFOAM
,”
The 30th International Ocean and Polar Engineering Conference
,
Virtual
,
Oct. 11–16
, OnePetro.
31.
Ha
,
Y.-J.
,
Cho
,
S.-K.
, and
Hong
,
S. Y.
,
2021
, “
CFD Study for Steep Focused Wave Interactions With Fixed and Moving Cylinders
,”
Int. J. Offshore Polar Eng.
,
31
(
1
), pp.
53
60
.
32.
Robertson
,
A. N.
,
Wendt
,
F.
,
Jonkman
,
J. M.
,
Popko
,
W.
,
Dagher
,
H.
,
Gueydon
,
S.
,
Qvist
,
J.
, et al.,
2017
, “
OC5 Project Phase II: Validation of Global Loads of the DeepCwind Floating Semisubmersible Wind Turbine
,”
Energy Procedia
,
137
, pp.
38
57
.
33.
de Ridder
,
E.-J.
,
Otto
,
W.
,
Zondervan
,
G.-J.
,
Huijs
,
F.
, and
Vaz
,
G.
,
2014
, “
Development of a Scaled-Down Floating Wind Turbine for Offshore Basin Testing
,”
Volume 9A: Ocean Renewable Energy, American Society of Mechanical Engineers.
34.
Robertson
,
A.
,
Jonkman
,
J.
,
Wendt
,
F.
,
Goupee
,
A.
, and
Dagher
,
H.
,
2016
, “
Definition of the OC5 DeepCwind Semisubmersible Floating System
,” Tech. Rep., NREL.
35.
Helder
,
J.
, and
Pietersma
,
M.
,
2013
, “
Umaine—Deepcwind/oc4 Semi Floating Wind Turbine
,” Tech. Rep., 27005-1-OB.
36.
Palm
,
J.
,
Eskilsson
,
C.
,
Paredes
,
G. M.
, and
Bergdahl
,
L.
,
2016
, “
Coupled Mooring Analysis for Floating Wave Energy Converters Using CFD: Formulation and Validation
,”
Int. J. Marine Energy
,
16
, pp.
83
99
.
37.
Rapuc
,
S.
,
Crepier
,
P.
,
Jaouen
,
F.
,
Bunnik
,
T.
, and
Regnier
,
P.
,
2018
, “
Towards Guidelines for Consistent Wave Propagation in CFD Simulations
,”
19th International Conference on Ship and Maritime Research
,
Trieste, Italy
,
June 20–22
.
38.
Sommerfeld
,
A.
,
1949
,
Partial Differential Equations in Physics
,
Academic Press
.
39.
de Boer
,
A.
,
van der Schoot
,
M.
, and
Bijl
,
H.
,
2007
, “
Mesh Deformation Based on Radial Basis Function Interpolation
,”
Comput. Struct.
,
85
(
11–14
), pp.
784
795
.
40.
Balay
,
S.
,
Abhyankar
,
S.
,
Adams
,
M. F.
,
Brown
,
J.
,
Brune
,
P.
,
Buschelman
,
K.
,
Dalcin
,
L.
, et al.,
2021
, “
PETSc Users Manual
,” Tech. Rep. ANL-95/11—Revision 3.15,
Argonne National Laboratory
.
41.
Wang
,
Y.
,
Chen
,
H.-C.
,
Vaz
,
G.
, and
Burmester
,
S.
,
2020
, “
CFD Simulation of Semi-Submersible Floating Offshore Wind Turbine Under Regular Waves
,”
The 30th International Ocean and Polar Engineering Conference
,
Virtual
,
Oct. 11–16
, ISOPE-I-20-1166.
42.
Kim
,
J.
,
Baquet
,
A.
, and
Jang
,
H.
,
2019
, “
Wave Propagation in CFD-Based Numerical Wave Tank
,”
International Conference on Offshore Mechanics and Arctic Engineering
,
Glasgow, Scotland, UK
,
June 9–14
, American Society of Mechanical Engineers, p. V001T01A008.
You do not currently have access to this content.