Abstract

Increased deployment of offshore wind turbines is seen as an important pathway to increase green renewable energy production. Improved and rapid identification of extreme events and evaluation of hydrodynamic loads due to such events is essential to reduce the cost of energy production. Numerical modeling to pre-screen sea states and to identify the crucial events to prioritize model tests will make a major contribution to reduce design times and costs for such structures. In this effort, a highly efficient and nonlinear numerical model based on the Laplace equations is used to generate undisturbed wave kinematics. Such a simulation is used to identify extreme wave events in a sea state realization, and further, the wave loading due to such events are evaluated using Morison formula. Events screened in this manner can then be transferred to a high-resolution model such as a Navier–Stokes equation-based solver to investigate the hydrodynamics in detail. The implementation and application of such an approach in the open-source hydrodynamic model REEF3D is presented in this work.

References

1.
Rosenberg
,
E.
,
Lind
,
A.
, and
Espegren
,
K. A.
,
2013
, “
The Impact of Future Energy Demand on Renewable Energy Production—Case of Norway
,”
Energy
,
61
, pp.
419
431
.
2.
Wiser
,
R.
,
Hand
,
M.
,
Seel
,
J.
, and
Paulos
,
B.
,
2016
, “
Reducing Wind Energy Costs Through Increased Turbine Size: Is The Sky The Limit
,”
Berkeley National Laboratory Electricity Markets and Policy Group
,
121
, pp.
1
7
.
3.
Wang
,
W.
,
Kamath
,
A.
,
Martin
,
T.
,
Pákozdi
,
C.
, and
Bihs
,
H.
,
2020
, “
A Comparison of Different Wave Modelling Techniques in An Open-Source Hydrodynamic Framework
,”
J. Mar. Sci. Eng.
,
8
(
7
), p.
526
.
4.
Bachynski
,
E. E.
,
Kristiansen
,
T.
, and
Thys
,
M.
,
2017
, “
Experimental and Numerical Investigations of Monopile Ringing in Irregular Finite-Depth Water Waves
,”
Appl. Ocean. Res.
,
68
, pp.
154
170
.
5.
Sharma
,
J. N.
, and
Dean
,
R. G.
,
1981
, “
Second-Order Directional Seas and Associated Wave Forces
,”
SPE J.
,
21
(
01
), pp.
129
140
.
6.
van Essen
,
S. M.
,
Monroy
,
C.
,
Shen
,
Z.
,
Helder
,
J.
,
Kim
,
D.-H.
,
Seng
,
S.
, and
Ge
,
Z.
,
2021
, “
Screening Wave Conditions for the Occurrence of Green Water Events on Sailing Ships
,”
Ocean. Eng.
,
234
, p.
109218
.
7.
Bihs
,
H.
,
Wang
,
W.
,
Pákozdi
,
C.
, and
Kamath
,
A.
,
2020
, “
REEF3D::FNPF–a Flexible Fully Nonlinear Potential Flow Solver
,”
ASME J. Offshore. Mech. Arct. Eng.
,
142
(
4
), p.
041902
.
8.
Bihs
,
H.
,
Kamath
,
A.
,
Alagan Chella
,
M.
, and
Arntsen
,
Ø. A.
,
2019
, “
Extreme Wave Generation, Breaking, and Impact Simulations Using Wave Packets in REEF3D
,”
ASME J. Offshore. Mech. Arct. Eng.
,
141
(
4
), p.
041802
.
9.
Wang
,
W.
,
Pákozdi
,
C.
,
Kamath
,
A.
, and
Bihs
,
H.
,
2021
, “
A Fully Nonlinear Potential Flow Wave Modelling Procedure for Simulations of Offshore Sea States With Various Wave Breaking Scenarios
,”
Appl. Ocean. Res.
,
117
, p.
102898
.
10.
Pákozdi
,
C.
,
Kamath
,
A.
,
Wang
,
W.
,
Martin
,
T.
, and
Bihs
,
H
,
2021
, “
Efficient Calculation of Spatial and Temporal Evolution of Hydrodynamic Loads on Offshore Wind Substructures
,”
International Conference on Offshore Mechanics and Arctic Engineering
, Vol.
85116
, Cancun, Mexico, Apr. 5–6,
American Society of Mechanical Engineers
, p.
V001T01A036
.
11.
Wang
,
W.
,
Kamath
,
A.
,
Pákozdi
,
C.
, and
Bihs
,
H.
,
2019
, “
Investigation of Focusing Wave Properties in a Numerical Wave Tank With a Fully Nonlinear Potential Flow Model
,”
J. Mar. Sci. Eng.
,
7
(
10
), p.
375
.
12.
Baquet
,
A.
,
Kim
,
J.
, and
Huang
,
Z.
,
2017
, “
Numerical Modeling Using CFD and Potential Wave Theory for Three-Hour Nonlinear Irregular Wave Simulations
,”
International Conference on Offshore Mechanics and Arctic Engineering
, Vol.
57632
, Trondheim, Norway, June 25–30,
American Society of Mechanical Engineers
, p.
V001T01A002
.
13.
Pákozdi
,
C.
,
Kamath
,
A.
,
Wang
,
W.
, and
Bihs
,
H.
,
2022
, “
Application of Arbitrary Lagrangian–Eulerian Strips with Fully Nonlinear Wave Kinematics for Force Estimation
,”
Mar. Struct.
,
83
, p.
103190
.
14.
Chorin
,
A.
,
1968
, “
Numerical Solution of the Navier-Stokes Equations
,”
Math. Comput.
,
22
(
104
), pp.
745
762
.
15.
Falgout
,
R. D.
, and
Yang
,
U. M.
,
2006
,
HYPRE High Performance Preconditioners–User’s Manual
,
Center for Applied Scientific Computing
,
Livermore, CA
.
16.
Ashby
,
S. F.
, and
Falgout
,
R. D.
,
1996
, “
A Parallel Mulitgrid Preconditioned Conjugate Gradient Algorithm for Groundwater Flow Simulations
,”
Nucl. Sci. Eng.
,
124
(
1
), pp.
145
159
.
17.
Kamath
,
A.
,
Fleit
,
G.
, and
Bihs
,
H.
,
2019
, “
Investigation of Free Surface Turbulence Damping in RANS Simulations for Complex Free Surface Flows
,”
Water
,
11
(
3
), p.
456
.
18.
Bihs
,
H.
,
Kamath
,
A.
,
Alagan Chella
,
M.
,
Aggarwal
,
A.
, and
Arntsen
,
Ø. A.
,
2016
, “
A New Level Set Numerical Wave Tank With Improved Density Interpolation for Complex Wave Hydrodynamics
,”
Comput. Fluids
,
140
, pp.
191
208
.
19.
Engsig-Karup
,
A. P.
,
Hesthaven
,
J. S.
,
Bingham
,
H. B.
, and
Warburton
,
T.
,
2008
, “
Dg-fem Solution for Nonlinear Wave-Structure Interaction Using Boussinesq-Type Equations
,”
Coast. Eng.
,
55
(
3
), pp.
197
208
.
20.
Jacobsen
,
N. G.
,
Fuhrman
,
D. R.
, and
Fredsøe
,
J.
,
2012
, “
A Wave Generation Toolbox for the Open-Source CFD Library: OpenFOAM
,”
Int. J. Numer. Methods Fluids
,
70
(
9
), pp.
1073
1088
.
21.
Chen
,
Q.
,
Kelly
,
D. M.
, and
Zang
,
J.
,
2019
, “
On the Relaxation Approach for Wave Absorption in Numerical Wave Tanks
,”
Ocean. Eng.
,
187
, p.
106210
.
22.
Miquel
,
A. M.
,
Kamath
,
A.
,
Alagan Chella
,
M.
,
Archetti
,
R.
, and
Bihs
,
H.
,
2018
, “
Analysis of Different Methods for Wave Generation and Absorption in a CFD-Based Numerical Wave Tank
,”
J. Mar. Sci. Eng.
,
6
(
2
), p.
73
.
23.
Schäffer
,
H. A.
, and
Klopman
,
G.
,
2000
, “
Review of Multidirectional Active Wave Absorption Methods
,”
J. Waterway, Port, Coast. Ocean Eng.
,
126
(
2
), pp.
88
97
.
24.
WAS-XL, 2017, WAS-XL Home Page, www.sintef.no/webpage/was-xl, Accessed 12 October 2022
.
25.
Pákozdi
,
C.
,
Wang
,
W.
,
Kamath
,
A.
, and
Bihs
,
H.
,
2021
, “
Reduction of the Wave Propagation Error of a Sigma Grid Based Numerical Tank Using a Vertical Spacing Based on the Constant Truncation Error
,”
Ocean. Eng.
,
239
, p.
109741
.
26.
Chen
,
L. F.
,
Zang
,
J.
,
Hillis
,
A. J.
,
Morgan
,
G. C. J.
, and
Plummer
,
A. R.
,
2014
, “
Numerical Investigation of Wave–Structure Interaction Using OpenFOAM
,”
Ocean. Eng.
,
88
, pp.
91
109
.
27.
Thys
,
M.
,
2019
, “
Model Test Report: Wave Kinematics and Loads
,” Technical Report No. OC2019 F-079, SINTEF Ocean, Trondheim, Norway.
28.
DNV-GL
,
2016
,
Loads and Site Conditions for Wind Turbines, Standard No. DNVGL-ST-0437
.
You do not currently have access to this content.