Abstract

Floating bodies are widely used in the field of offshore engineering. Existing studies show that the motion responses of a floating body in waves will change with the internal water in the cabins, and it is essential to analyze its hydrodynamic performance under various potential operating conditions. However, most of the research only considers the interaction between the floating body and the internal water in the upright position, and there has been little research on the inclined floating body caused by water partially filled in the broadside. In this study, a floating body with a plurality of longitudinal and transverse cabins was designed. The regular wave model test was carried out in a wave basin, and the numerical results were compared with the experimental results, which verified the accuracy of the model. The effects of wave direction, wave frequency, water-filling depth, and cabin division on the motion responses of the floating body are analyzed. The results show that the water inside the cabins has a significant impact on the roll motion. With the increase of the water-filling depth, the natural frequency of the roll motion decreases. Special attention should be paid to the impact on the wave direction and cabin division on the partially water-filled inclined floating body.

References

1.
Andrianov
,
A. I.
, and
Hermans
,
A. J.
,
2003
, “
The Influence of Water Depth on the Hydroelastic Response of a Very Large Floating Platform
,”
Mar. Struct.
,
16
(
5
), pp.
355
371
.
2.
Seif
,
M. S.
, and
Inoue
,
Y.
,
1998
, “
Dynamic Analysis of Floating Bridges
,”
Mar. Struct.
,
11
(
1–2
), pp.
29
46
.
3.
Nguyen
,
H. P.
, and
Wang
,
C. M.
,
2020
, “
Heaving Wave Energy Converter-Type Attachments to a Pontoon-Type Very Large Floating Structure
,”
Eng. Struct.
,
219
, p.
110964
.
4.
Soares
,
C. G.
, and
Teixeira
,
A. P.
,
2001
, “
Risk Assessment in Maritime Transportation
,”
Reliab. Eng. Syst. Saf.
,
74
(
3
), pp.
299
309
.
5.
Cui
,
D. L.
,
Yan
,
S. Z.
,
Guo
,
X. S.
, and
Gao
,
R. X.
,
2014
, “
Parametric Resonance of Liquid Sloshing in Partially Filled Spacecraft Tanks During the Powered-Flight Phase of Rocket
,”
Aerosp. Sci. Technol.
,
35
(
1
), pp.
93
105
.
6.
Navabi
,
M.
,
Davoodi
,
A.
, and
Reyhanoglu
,
M.
,
2019
, “
Modeling and Control of a Nonlinear Coupled Spacecraft-Fuel System
,”
Acta. Astronaut.
,
162
, pp.
436
446
.
7.
Gao
,
J.
,
Ma
,
X.
,
Dong
,
G.
,
Chen
,
H.
,
Liu
,
Q.
, and
Zang
,
J.
,
2021
, “
Investigation on the Effects of Bragg Reflection on Harbor Oscillations
,”
Coast. Eng.
,
170
, p.
103977
.
8.
Gao
,
J.
,
Ma
,
X.
,
Zang
,
J.
,
Dong
,
G.
,
Ma
,
X.
,
Zhu
,
Y.
, and
Zhou
,
L.
,
2020
, “
Numerical Investigation of Harbor Oscillations Induced by Focused Transient Wave Groups
,”
Coast. Eng.
,
158
, p.
103670
.
9.
Badran
,
O.
,
Gaith
,
M. S.
, and
Al-Solihat
,
A.
,
2012
, “
The Vibration of Partially Filled Cylindrical Tank Subjected to Variable Acceleration
,”
Engineering
,
4
(
9
), pp.
540
547
.
10.
Nasar
,
T.
,
Sannasiraj
,
S. A.
, and
Sundar
,
V.
,
2008
, “
Experimental Study of Liquid Sloshing Dynamics in a Barge Carrying Tank
,”
Fluid. Dyn. Res.
,
40
(
6
), pp.
427
458
.
11.
Rognebakke
,
O. F.
, and
Faltinsen
,
O. M.
,
2003
, “
Coupling of Sloshing and Ship Motions
,”
J. Ship Res.
,
47
(
3
), pp.
208
221
.
12.
Nam
,
B.
, and
Kim
,
Y.
,
2007
, “
Effects of Sloshing on the Motion Response of LNG-FPSO in Waves
,”
22nd International Workshop on Water Waves and Floating Bodies
,
Plitvice, Croatia
,
Apr. 15–18
, pp.
153
156
.
13.
Molin
,
B.
,
Remy
,
F.
,
Rigaud
,
S.
, and
De Jouette
,
C.
,
2002
, “
LNG-FPSO’s: Frequency Domain, Coupled Analysis of Support and Liquid Cargo Motion
,”
10th International Maritime Association of the Mediterranean Conference
,
Rethymnon, Greece
,
May 13–17
.
14.
Molin
,
B.
,
Remy
,
F.
,
Ledoux
,
A.
, and
Ruiz
,
N.
,
2008
, “
Effect of Roof Impacts on Coupling Between Wave Response and Sloshing in Tanks of LNG Carriers
,”
27th International Conference on Offshore Mechanics and Arctic Engineering
,
Estoril, Portugal
,
June 15–20
, pp.
15
24
.
15.
Zhao
,
W. H.
,
Yang
,
J. M.
,
Hu
,
Z. Q.
, and
Xiao
,
L. F.
,
2012
, “
Experimental Investigation of Effects of Inner-Tank Sloshing on Hydrodynamics of an FLNG System
,”
J. Hydrodyn.
,
24
(
1
), pp.
107
115
.
16.
Su
,
B.
,
Tsarau
,
A.
,
Endresen
,
P. C.
,
Kristiansen
,
D.
, and
Lader
,
P. F.
,
2021
, “
Numerical Study of Closed Rigid Fish Cages in Waves and Comparison With Experimental Data
,”
Ocean Eng.
,
233
, p.
109210
.
17.
Shen
,
Y.
,
Firoozkoohi
,
R.
,
Greco
,
M.
, and
Faltinsen
,
O. M.
,
2021
, “
Experimental Investigation of a Closed Vertical Cylinder-Shaped Fish Cage in Waves
,”
Ocean Eng.
,
236
(
7491
), p.
109444
.
18.
Rocha
,
T. P.
,
Dotta
,
R.
,
Vieira
,
D. P.
,
De Mello
,
P. C.
,
Malta
,
E. B.
, and
Nishimoto
,
K.
,
2015
, “
Experimental Investigation on the Influence of Liquid Cargo in Floating Vessels Motions
,”
3rd Offshore Technology Conference Brazil
,
Rio de Janeiro, Brazil
,
Oct. 27–29
, pp.
1292
1302
.
19.
Gonzalez
,
I. F.
,
Mondragon
,
J. S.
, and
Giron
,
A. R. C.
,
2022
, “
Sloshing Study on Prismatic LNG Tank for the Vertical Location of the Rotational Center
,”
Comput. Part. Mech.
,
9
(
4
), pp.
843
862
.
20.
Lyu
,
W.
,
el Moctar
,
O.
, and
Schellin
,
T. E.
,
2021
, “
Ship Motion-Sloshing Interaction Using a Field Method
,”
Mar. Struct.
,
76
, p.
102923
.
21.
Lyu
,
W.
,
el Moctar
,
O.
, and
Schellin
,
T. E.
,
2022
, “
Ship Motion-Sloshing Interaction With Forward Speed in Oblique Waves
,”
Ocean. Eng.
,
250
, p.
110999
.
22.
Zhuang
,
Y.
,
Wang
,
G.
,
Wan
,
D.
, and
Wu
,
J.
,
2022
, “
Numerical Simulations of FPSO With Sloshing Tanks in a Random Freak Waves
,”
J. Hydrodyn.
,
34
(
3
), pp.
491
498
.
23.
Zhao
,
D.
,
Hu
,
Z.
,
Zhou
,
K.
,
Chen
,
G.
,
Chen
,
X.
, and
Feng
,
X.
,
2018
, “
Coupled Analysis of Integrated Dynamic Responses of Side-by-Side Offloading FLNG System
,”
Ocean Eng.
,
168
, pp.
60
82
.
24.
Li
,
Y. L.
,
Su
,
M.
,
Li
,
H.
,
Deng
,
R.
,
Wang
,
K. P.
, and
Hu
,
Z.
,
2019
, “
Numerical Research on Time Domain Ship Motions Coupled With Sloshing at Different Liquid Levels and Forward Speeds
,”
Ocean Eng.
,
178
, pp.
246
259
.
25.
Liu
,
X. W.
,
Zhao
,
W. W.
, and
Wan
,
D. C.
,
2021
, “
Optimization of the Roll Motion of Box-Shaped Hull Section With Anti-Rolling Sloshing Tanks and Fins in Beam Waves
,”
J. Hydrodyn.
,
33
(
4
), pp.
688
697
.
26.
Zheng
,
M.
,
Ni
,
Y.
,
Wu
,
C.
, and
Jo
,
H. J.
,
2021
, “
Experimental Investigation on Effect of Sloshing on Ship Added Resistance in Head Waves
,”
Ocean Eng.
,
235
, p.
109362
.
27.
Kim
,
Y.
,
Nam
,
B. W.
,
Kim
,
D. W.
, and
Kim
,
Y. S.
,
2007
, “
Study on Coupling Effects of Ship Motion and Sloshing
,”
Ocean Eng.
,
34
(
16
), pp.
2176
2187
.
28.
Chen
,
X. J.
,
Miao
,
Y. J.
,
Tang
,
X. F.
, and
Liu
,
J. Y.
,
2017
, “
Numerical and Experimental Analysis of a Moored Pontoon Under Regular Wave in Water of Finite Depth
,”
Ships Offshore Struct.
,
12
(
3
), pp.
412
423
.
29.
Sarpkaya
,
T.
, and
Isaacson
,
M.
,
1981
,
Mechanics of Wave Forces on Offshore Structures
,
Van Nostrand Reinhold
,
New York
.
30.
Faltinsen
,
O. M.
,
1995
,
Sea Loads on Ships and Offshore Structures
,
Cambridge University Press
,
Cambridge, UK
.
31.
Malenica
,
S.
,
Zalar
,
M.
, and
Chen
,
X. B.
,
2003
, “
Dynamic Coupling of Seakeeping and Sloshing
,”
13th International Offshore and Polar Engineering Conference
,
Honolulu, HI
,
May 25–30
, pp.
486
492
.
32.
Akyildiz
,
H.
, and
Erdem Ünal
,
N.
,
2006
, “
Sloshing in a Three-Dimensional Rectangular Tank: Numerical Simulation and Experimental Validation
,”
Ocean Eng.
,
33
(
16
), pp.
2135
2149
.
33.
ANSYS
,
2020
,
AQWA Theory Manual, Release 2020R2
,
ANSYS-Inc.
,
Canonsburg, PA
.
34.
Liang
,
H.
,
Liu
,
X.
,
Chua
,
K. H.
,
de Mello
,
P. C.
, and
Choo
,
Y. S.
,
2022
, “
Wave Actions on Side-by-Side Barges With Sloshing Effects: Fixed-Free Arrangement
,”
Flow
,
2
, p.
E20
.
35.
Kim
,
M.
,
Jung
,
K. H.
,
Park
,
S.
,
Suh
,
S. B.
,
Park
,
I. R.
,
Kim
,
J.
, and
Kim
,
K. S.
,
2019
, “
Experimental Study on Viscous Effect in Roll and Heave Motions of a Rectangular Structure
,”
Ocean Eng.
,
171
, pp.
250
258
.
36.
Faltinsen
,
O. M.
, and
Timokha
,
A. N.
,
2019
, “
An Inviscid Analysis of the Prandtl Azimuthal Mass Transport During Swirl-Type Sloshing
,”
J. Fluid. Mech.
,
865
, pp.
884
903
.
37.
Liang
,
H.
,
Santo
,
H.
,
Shao
,
Y.
,
Law
,
Y. Z.
, and
Chan
,
E. S.
,
2020
, “
Liquid Sloshing in an Upright Circular Tank Under Periodic and Transient Excitations
,”
Phys. Rev. Fluids
,
5
(
8
), p.
084801
.
38.
Liu
,
R.
,
Shao
,
Y.
,
Chen
,
J.
, and
Liang
,
H.
,
2022
, “
Nonlinear Liquid Sloshing in an Upright Circular Container: Modal Responses and Higher-Order Harmonics
,”
Phys. Fluids
,
34
(
1
), p.
012116
.
39.
Zhang
,
Y.
,
Liang
,
H.
,
Chua
,
K. H.
,
Liu
,
X.
, and
de Mello
,
P.
,
2022
, “
Experimental and Numerical Analysis of Resonant Sloshing Flow in a Membrane Tank of Different Filling Levels
,”
Ocean Eng.
,
263
, p.
112337
.
40.
Cao
,
Y.
, and
Zhang
,
F.
,
2016
, “
Effects of Fluid Motions in Liquid Tanks on Vessel Motions Using a Simple Panel Method
,”
ASME J. Offshore Mech. Arct. Eng.
,
138
(
1
), p.
011301
.
You do not currently have access to this content.