Abstract

An offshore energy transition, even if only a gradual one, from carbon-emitting fossil fuel extraction to cleaner sources is recommended, if we are to slow the harmful impacts of climate change. The potential for sustainable reuse of decommissioned offshore jacket platforms to support wind turbines is being considered as an attractive proposition in such a transition. To maximize the benefits of such reuse of assets, what is needed is a rational optimization strategy that considers the remaining life of a repurposed platform, associated retrofit and construction costs, and a future period of gross renewable energy generation following installation of the wind turbine. We outline a study that employs a fatigue reliability-based framework, based on the global fatigue approach and Palmgren–Miner’s rule, to aid in such sustainable reuse planning and optimization. The framework proposed identifies an optimized reuse plan that incorporates metocean data analysis, structural analysis, life cycle evaluation, and revenue optimization. We employ a case study and sustainable reuse scenario for a site in the vicinity of Porto (Leixões), Portugal.

References

1.
Leporini
,
M.
,
Marchetti
,
B.
,
Corvaro
,
F.
, and
Polonara
,
F.
,
2018
, “
Reconversion of Offshore Oil and Gas Platforms Into Renewable Energysites Production: Assessment of Different Scenarios
,”
Renewable Energy
,
135
, pp.
1121
1132
.
2.
Kaiser
,
M. J.
, and
Narra
,
S.
,
2018
, “
Gulf of Mexico Decommissioning: Trends and Operating Cost Estimation
,”
US Department of the Interior, Bureau of Ocean Energy Management
,
Technical Report
.
3.
Truchon
,
S. P.
,
Brzuzy
,
L. P.
,
Fawcett
,
D.
, and
Fonseca
,
M.
,
2015
, “
Innovative Assessments for Selecting Offshore-Platform-Decommissioning Alternatives
,”
Oil Gas Facilit.
,
4
(
5
), pp.
47
55
.
4.
Li
,
J.
,
Peng
,
Y.
,
Zhu
,
M.
,
Wang
,
K.
, and
Yi
,
J.
,
2018
, “
Decommission in Petroleum Industry: Current Status, Future Trends and Policy Advices
,”
IOP Conf. Ser.: Earth Environ. Sci.
,
237
, p.
042013
.
5.
Pereira
,
E. G.
,
Wawryk
,
A.
,
Trischmann
,
H.
,
Banet
,
C.
, and
Hall
,
K. B.
,
2020
,
The Regulation of Decommissioning, Abandonment and Reuse Initiatives in the Oil and Gas Industry: From Obligation to Opportunities
,
Kluwer Law International B.V.
,
The Netherlands
, p.
11
.
6.
Barros
,
J.
,
Fernandes
,
G.
,
Silva
,
M. M.
,
Da Silva
,
R.
, and
Santos
,
B.
,
2017
, “
Fixed Platforms at Ageing Oil Fields – Feasibility Study for Reuse to Wind Farms
,”
Offshore Technology Conference
,
Houston, TX
,
May 1–4
, OnePetro.
7.
Quissanga
,
V. M.
, and
Galgoul
,
N. S.
,
2020
, “
Feasibility Study for the Reuse of a Steel Offshore Platform as the Base of a Wind Tower
,”
Int. J. Res. Eng. Sci.
,
8
(
8
), pp.
1
6
.
8.
DNV GL
,
2018
, “
Metocean Characterization Recommended Practices for U.S. Offshore Wind Energy
,”
10039663-HOU-01, Report by DNV GL, Report for Bureau of Ocean Energy Management (BOEM).
9.
Bitner-Gregersen
,
E. M.
, and
Haver
,
S.
,
1991
, “
Joint Environmental Model for Reliability Calculations
,”
The First International Offshore and Polar Engineering Conference
,
Edinburgh, UK
,
Aug. 11–16
, OnePetro.
10.
Jonathan
,
P.
,
Flynn
,
J.
, and
Ewans
,
K.
,
2010
, “
Joint Modelling of Wave Spectral Parameters for Extreme Sea States
,”
Ocean Eng.
,
37
(
11–12
), pp.
1070
1080
.
11.
Bitner-Gregersen
,
E. M.
,
2015
, “
Joint Met-Ocean Description for Design and Operations of Marine Structures
,”
Appl. Ocean Res.
,
51
, pp.
279
292
.
12.
Li
,
L.
,
Gao
,
Z.
, and
Moan
,
T.
,
2015
, “
Joint Distribution of Environmental Condition at Five European Offshore Sites for Design of Combined Wind and Wave Energy Devices
,”
ASME J. Offshore Mech. Arct. Eng.
,
137
(
3
), p.
031901
.
13.
Bitner-Gregersen
,
E.
,
Guedes Soares
,
C.
,
Machado
,
U.
, and
Cavaco
,
P.
,
1998
, “Comparison of Different Approaches to Joint Environmental Modelling,”
Proceedings of the 17th International Conference on Offshore Mechanics and Arctic Engineering, Vol. 2
,
ASME
,
New York
.
14.
Sagrilo
,
L. V. S.
,
Prates de Lima
,
E. C.
, and
Papaleo
,
A.
,
2011
, “
A Joint Probability Model for Environmental Parameters
,”
ASME J. Offshore Mech. Arct. Eng.
,
133
(
3
), p.
031605
.
15.
Bitner-Gregersen
,
E. M.
,
Garbatov
,
Y.
,
Fonseca
,
N.
, and
Teixeira
,
A.
,
2012
, “Joint Long-Term Models of Met-Ocean Parameters,”
CENTEC Anniversary Book, AA Balkema Publishers
,
Taylor and Francis
,
The Netherlands
.
16.
Vanem
,
E.
,
2016
, “
Joint Statistical Models for Significant Wave Height and Wave Period in a Changing Climate
,”
Mar. Struct.
,
49
, pp.
180
205
.
17.
Jonathan
,
P.
, and
Ewans
,
K.
,
2013
, “
Statistical Modelling of Extreme Ocean Environments for Marine Design: A Review
,”
Ocean Eng.
,
62
, pp.
91
109
.
18.
Manuel
,
L.
,
Nguyen
,
P. T.
,
Canning
,
J.
,
Coe
,
R. G.
,
Eckert-Gallup
,
A. C.
, and
Martin
,
N.
,
2018
, “
Alternative Approaches to Develop Environmental Contours From Metocean Data
,”
J. Ocean Eng. Mar. Energy
,
4
(
4
), pp.
293
310
.
19.
Haselsteiner
,
A. F.
,
Coe
,
R. G.
,
Manuel
,
L.
,
Nguyen
,
P. T. T.
,
Martin
,
N.
, and
Eckert-Gallup
,
A.
,
2019
, “
A Benchmarking Exercise on Estimating Extreme Environmental Conditions: Methodology and Baseline Results
,”
International Conference on Offshore Mechanics and Arctic Engineering
,
Glasgow, Scotland, UK
,
June 9–14
, p. V003T02A049.
20.
Haselsteiner
,
A. F.
,
Coe
,
R. G.
,
Manuel
,
L.
,
Chai
,
W.
,
Leira
,
B.
,
Clarindo
,
G.
,
Guedes Soares
,
C.
, et al.,
2021
, “
A Benchmarking Exercise for Environmental Contours
,”
Ocean Eng.
,
236
, p.
109504
.
21.
Alessi
,
L.
,
Correia
,
J. A.
, and
Fantuzzi
,
N.
,
2019
, “
Initial Design Phase and Tender Designs of a Jacket Structure Converted Into a Retrofitted Offshore Wind Turbine
,”
Energies
,
12
(
4
), p.
659
.
22.
Lesiuk
,
G.
,
Fantuzzi
,
N.
,
De Jesus
,
A. M.
, and
Calcada
,
R. A.
,
2019
, “
Fatigue Damage Analysis of Offshore Structures Using Hot-Spot Stress and Notch Strain Approaches
,”
Exp. Mech. Solids
,
12
, p.
146
.
23.
Mendes
,
P.
,
Correia
,
J. A.
,
Castro
,
J. M.
,
Fantuzzi
,
N.
,
Aidibi
,
A.
, and
Manuel
,
L.
,
2021
, “
Horizontal and Vertical Axis Wind Turbines on Existing Jacket Platforms: Part 1 – A Comparative Study
,”
Structures
,
32
, pp.
1069
1080
.
24.
Mendes
,
P.
,
Correia
,
J. A.
,
Arrojado
,
J.
,
Heo
,
T.
,
Fantuzzi
,
N.
, and
Manuel
,
L.
,
2022
, “
Horizontal and Vertical Axis Wind Turbines on Existing Jacket Platforms: Part 2 – Retrofitting Activities
,”
Structures
,
40
, pp.
109
126
.
25.
Ragan
,
P.
, and
Manuel
,
L.
,
2007
, “
Comparing Estimates of Wind Turbine Fatigue Loads Using Time-Domain and Spectral Methods
,”
Wind Eng.
,
31
, pp.
83
99
.
26.
Correia
,
J.
,
Apetre
,
N.
,
Arcari
,
A.
,
De Jesus
,
A.
,
Muñiz-Calvente
,
M.
,
Calçada
,
R.
,
Berto
,
F.
, and
Fernández-Canteli
,
A.
,
2017
, “
Generalized Probabilistic Model Allowing for Various Fatigue Damage Variables
,”
Int. J. Fatigue
,
100
, pp.
187
194
.
27.
Correia
,
J. A.
,
Correia
,
M.
,
Holm
,
M.
,
Ekeborg
,
J.
,
Lesiuk
,
G.
,
Castro
,
J. M.
,
de Jesus
,
A. M.
, and
Calçada
,
R.
,
2018
, “
Evaluation of fatigue design curves for a double-side welded connection used in offshore applications
,”
Pressure Vessels and Piping Conference
,
Prague, Czech Republic
,
July 15–20
, p. V06AT06A028.
28.
Hsu
,
S.
,
Meindl
,
E. A.
, and
Gilhousen
,
D. B.
,
1994
, “
Determining the Power-Law Wind-Profile Exponent Under Near-Neutral Stability Conditions at Sea
,”
J. Appl. Meteorol. Climatol.
,
33
(
6
), pp.
757
765
.
29.
Scott
,
D. W.
,
2015
,
Multivariate Density Estimation: Theory, Practice, and Visualization
,
John Wiley & Sons
,
Hoboken, NJ
.
30.
Niemi
,
E.
,
Fricke
,
W.
, and
Maddox
,
S. J.
,
2018
, “The Structural Hot-Spot Stress Approach to Fatigue Analysis,”
Structural Hot-Spot Stress Approach to Fatigue Analysis of Welded Components
,
Springer
,
Singapore
, pp.
5
12
.
31.
Kaimal
,
J. C.
,
Wyngaard
,
J.
,
Izumi
,
Y.
, and
Coté
,
O.
,
1972
, “
Spectral Characteristics of Surface-Layer Turbulence
,”
Q. J. R. Metereol. Soc.
,
98
(
417
), pp.
563
589
.
32.
Veers
,
P. S.
,
1988
, “Three-Dimensional Wind Simulation,”
Technical Report
,
Sandia National Labs
.,
Albuquerque, NM
.
33.
Det Norske Veritas
,
2013
, “Design of Offshore Wind Turbine Structures,”
DNV-OS-J101, Offshore Standard.
34.
Miner
,
M. A.
,
1945
, “
Cumulative Damage in Fatigue
,”
ASME J. Appl. Mech.
,
12
(
3
), pp.
159
164
.
35.
Calvo
,
S.
,
Canales
,
M.
,
Gómez
,
C.
,
Valdés
,
J.
, and
Núñez
,
J.
,
2011
, “
Probabilistic Formulation of the Multiaxial Fatigue Damage of Liu
,”
Int. J. Fatigue
,
33
(
3
), pp.
460
465
.
36.
Ellyin
,
F.
,
2012
,
Fatigue Damage, Crack Growth and Life Prediction
,
Springer Science & Business Media
,
Berlin, Germany
.
37.
Rychlik
,
I.
,
1987
, “
A New Definition of the Rainflow Cycle Counting Method
,”
Int. J. Fatigue
,
9
(
2
), pp.
119
121
.
38.
ASTM E1049-85
,
2017
, “Standard Practices for Cycle Counting in Fatigue Analysis,”
ASTM International.
39.
Crandall
,
S. H.
,
Mark
,
W. D.
, and
Khabbaz
,
G. R.
,
1962
, “The Variance on Palmgren-Miner Damage Due to Random Vibration,” Technical Report, Massachusetts Institute of Technology, Cambridge, MA.
40.
Bendat
,
J. S.
,
1964
, “Probability Functions for Random Responses: Prediction of Peaks, Fatigue Damage, and Catastrophic Failures,”
Technical Report, NASA.
41.
Low
,
Y. M.
,
2012
, “
Variance of the Fatigue Damage Due to a Gaussian Narrowband Process
,”
Struct. Saf.
,
34
(
1
), pp.
381
389
.
42.
Veers
,
P. S.
,
Winterstein
,
S. R.
,
Lange
,
C. H.
, and
Wilson
,
T. A.
,
1994
, “Users Manual for FAROW: Fatigue and Reliability of Wind Turbine Components: Version 1.1,”
Technical Report
,
Sandia National Labs
,
Albuquerque, NM
.
43.
Jonkman
,
J.
,
Butterfield
,
S.
,
Musial
,
W.
, and
Scott
,
G.
,
2009
, “Definition of a 5-MW Reference Wind Turbine for Offshore System Development,”
Technical Report, National Renewable Energy Lab.(NREL), Golden, CO.
44.
Popko
,
W.
,
Vorpahl
,
F.
,
Zuga
,
A.
,
Kohlmeier
,
M.
,
Jonkman
,
J.
,
Robertson
,
A.
,
Larsen
,
T. J.
,
Yde
,
A.
,
Sætertrø
,
K.
,
Okstad
,
K. M.
, and
Nichols
,
J.
,
2012
, “
Offshore Code Comparison Collaboration Continuation (OC4), Phase 1-Results of Coupled Simulations of an Offshore Wind Turbine With Jacket Support Structure
,”
The Twenty-Second International Offshore and Polar Engineering Conference
,
Rhodes, Greece
,
June 17–22
, OnePetro.
45.
Malcolm
,
D. J.
, and
Hansen
,
A. C.
,
2006
, “Windpact Turbine Rotor Design Study: June 2000–June 2002 (revised),”
Technical Report, National Renewable Energy Lab. (NREL), Golden, CO.
46.
Institute
,
A. P.
,
2014
, “Planning, Designing, and Constructing Fixed Offshore Platforms: Working Stress Design,” Standard, API.
47.
Stehly
,
T.
,
Beiter
,
P.
, and
Duffy
,
P.
,
2020
, “2019 Cost of Wind Energy Review,” Technical Report, National Renewable Energy Lab. (NREL), Golden, CO.
48.
Haselsteiner
,
A. F.
,
Coe
,
R. G.
,
Manuel
,
L.
,
Chai
,
W.
,
Leira
,
B.
,
Clarindo
,
G.
,
Soares
,
C. G.
,
Hannesdóttir
,
Á.
,
Dimitrov
,
N.
,
Sander
,
A.
, and
Ohlendorf
,
J. H.
,
2021
, “
A Benchmarking Exercise for Environmental Contours
,”
Ocean Eng.
,
236
, p.
109504
.
49.
Mackay
,
E.
,
Haselsteiner
,
A. F.
,
Coe
,
R. G.
, and
Manuel
,
L.
,
2021
, “
A Second Benchmarking Exercise on Estimating Extreme Environmental Conditions: Methodology & Baseline Results
,”
International Conference on Offshore Mechanics and Arctic Engineering
,
Virtual, Online
,
June 21–30
, p. V002T02A015.
50.
Det Norske Veritas
,
2016
, “Fatigue Design of Offshore Structures,” DNV-RP-C203, Offshore Standard.
51.
Pierson Jr
,
W. J.
, and
Moskowitz
,
L.
,
1964
, “
A Proposed Spectral Form for Fully Developed Wind Seas Based on the Similarity Theory of S A Kitaigorodskii
,”
J. Geophys. Res.
,
69
(
24
), pp.
5181
5190
.
52.
Mann
,
J.
,
1998
, “
Wind Field Simulation
,”
Probab. Eng. Mech.
,
13
(
4
), pp.
269
282
.
53.
Solari
,
G.
,
1987
, “
Turbulence Modeling for Gust Loading
,”
J. Struct. Eng.
,
113
(
7
), pp.
1550
1569
.
54.
Guedes Soares
,
C.
, and
Garbatov
,
Y.
,
2017
, “System Reliability of a Jacket Offshore Wind Turbine Subjected to Fatigue,”
Progress in the Analysis and Design of Marine Structures
,
CRC Press
,
Boca Raton, FL
, pp.
939
950
.
55.
Musial
,
W.
,
Beiter
,
P.
,
Nunemaker
,
J.
,
Gevorgian
,
V.
,
Cooperman
,
A.
,
Hammond
,
R.
,
Shields
,
M.
, and
Spitsen
,
P.
,
2020
, “2019 Offshore Wind Technology Data Update,”
Technical Report, National Renewable Energy Lab. (NREL), Golden, CO.
56.
Eberle
,
A.
,
Roberts
,
J. O.
,
Key
,
A.
,
Bhaskar
,
P.
, and
Dykes
,
K. L.
,
2019
, “NREL’s Balance-of-System Cost Model for Land-Based Wind,”
Technical Report, National Renewable Energy Lab. (NREL), Golden, CO.
57.
Beiter
,
P.
,
Musial
,
W.
,
Smith
,
A.
,
Kilcher
,
L.
,
Damiani
,
R.
,
Maness
,
M.
,
Sirnivas
,
S.
,
Stehly
,
T.
,
Gevorgian
,
V.
,
Mooney
,
M.
, and
Scott
,
G.
,
2016
, “A Spatial-Economic Cost-Reduction Pathway Analysis for us Offshore Wind Energy Development From 2015–2030,”
Technical Report, National Renewable Energy Lab. (NREL), Golden, CO.
You do not currently have access to this content.