Abstract

In an emerging “blue economy,” the use of large multi-purpose floating platforms in the open ocean is being considered. Such platforms could possibly support a diversified range of commercial activities including energy generation, aquaculture, seabed mining, transport, tourism, and sea-based laboratories. A Markov decision process (MDP) framework is proposed to deal with operations and maintenance (O&M) issues that are inevitable; challenges arise from the complex stochastic weather conditions that need to be accounted for. Using data as well as contrasting synthetic simulations of relevant weather variables, we demonstrate the robustness/versatility of the MDP model. Two case studies—one involving constant and another involving time-dependent downtime costs—are conducted to demonstrate how the proposed MDP framework incorporates weather patterns from available data and can offer optimal policies for distinct metocean conditions (i.e., temporal variations in the weather). A realistic example that illustrates the implementation of the proposed framework for multiple O&M issues involving salmon net pens and wave energy converters demonstrates how our optimal policies can minimize O&M costs and maximize crew safety almost as if the true future were known for scheduling.

References

1.
Abhinav
,
K.
,
Collu
,
M.
,
Benjamins
,
S.
,
Cai
,
H.
,
Hughes
,
A.
,
Jiang
,
B.
,
Jude
,
S.
, et al.,
2020
, “
Offshore Multi-Purpose Platforms for a Blue Growth: A Technological, Environmental and Socio-Economic Review
,”
Sci. Total Environ.
,
734
, p.
138256
.
2.
Rinaldi
,
G.
,
Garcia-Teruel
,
A.
,
Jeffrey
,
H.
,
Thies
,
P. R.
, and
Johanning
,
L.
,
2021
, “
Incorporating Stochastic Operation and Maintenance Models Into the Techno-Economic Analysis of Floating Offshore Wind Farms
,”
Appl. Energy
,
301
, p.
117420
.
3.
Food and Agriculture Organization of the United Nations
,
2020
, “
The State of World Fisheries and Aquaculture 2020. Sustainability in Action
,” Rome.
4.
Joffre
,
O. M.
,
Klerkx
,
L.
,
Dickson
,
M.
, and
Verdegem
,
M.
,
2017
, “
How is Innovation in Aquaculture Conceptualized and Managed? A Systematic Literature Review and Reflection Framework to Inform Analysis and Action
,”
Aquaculture
,
470
, pp.
129
148
.
5.
Føre
,
M.
,
Frank
,
K.
,
Norton
,
T.
,
Svendsen
,
E.
,
Alfredsen
,
J. A.
,
Dempster
,
T.
,
Eguiraun
,
H.
, et al.,
2018
, “
Precision Fish Farming: A New Framework to Improve Production in Aquaculture
,”
Biosyst. Eng.
,
173
, pp.
176
193
.
6.
El-Thalji
,
I.
,
2019
, “
Context Analysis of Offshore Fish Farming
,”
IOP Conf. Ser: Mater. Sci. Eng.
,
700
, p.
012065
.
7.
Sie
,
Y.-T.
,
Château
,
P.-A.
,
Chang
,
Y.-C.
, and
Lu
,
S.-Y.
,
2018
, “
Stakeholders Opinions on Multi-use Deep Water Offshore Platform in Hsiao-Liu-Chiu, Taiwan
,”
Int. J. Environ. Res. Public Health
,
15
(
2
), p.
281
.
8.
Zanuttigh
,
B.
,
Angelelli
,
E.
,
Bellotti
,
G.
,
Romano
,
A.
,
Krontira
,
Y.
,
Troianos
,
D.
,
Suffredini
,
R.
, et al.,
2015
, “
Boosting Blue Growth in a Mild Sea: Analysis of the Synergies Produced by a Multi-purpose Offshore Installation in the Northern Adriatic, Italy
,”
Sustainability
,
7
(
6
), pp.
6804
6853
.
9.
Dalton
,
G.
,
Bardócz
,
T.
,
Blanch
,
M.
,
Campbell
,
D.
,
Johnson
,
K.
,
Lawrence
,
G.
,
Lilas
,
T.
, et al.,
2019
, “
Feasibility of Investment in Blue Growth Multiple-Use of Space and Multi-use Platform Projects; Results of a Novel Assessment Approach and Case Studies
,”
Renew Sustainable Energy Rev.
,
107
, pp.
338
359
.
10.
Foteinis
,
S.
, and
Tsoutsos
,
T.
,
2017
, “
Strategies to Improve Sustainability and Offset the Initial High Capital Expenditure of Wave Energy Converters (WECs)
,”
Renew Sustainable Energy Rev.
,
70
, pp.
775
785
.
11.
Seyr
,
H.
, and
Muskulus
,
M.
,
2019
, “
Decision Support Models for Operations and Maintenance for Offshore Wind Farms: A Review
,”
Appl. Sci.
,
9
(
2
), p.
278
.
12.
Ambühl
,
S.
,
Marquis
,
L.
,
Kofoed
,
J. P.
, and
Dalsgaard Sørensen
,
J.
,
2015
, “
Operation and Maintenance Strategies for Wave Energy Converters
,”
Proc. Inst. Mech. Eng., Part O: J. Risk Reliab.
,
229
(
5
), pp.
417
441
.
13.
Sørensen
,
J. D.
,
2009
, “
Framework for Risk-Based Planning of Operation and Maintenance for Offshore Wind Turbines
,”
Wind Energy: Int. J. Prog. Appl. Wind Power Convers. Technol.
,
12
(
5
), pp.
493
506
.
14.
Seyr
,
H.
, and
Muskulus
,
M.
,
2019
, “
Use of Markov Decision Processes in the Evaluation of Corrective Maintenance Scheduling Policies for Offshore Wind Farms
,”
Energies
,
12
(
15
), p.
2993
.
15.
Schouten
,
T. N.
,
Dekker
,
R.
,
Hekimoğlu
,
M.
, and
Eruguz
,
A. S.
,
2022
, “
Maintenance Optimization for a Single Wind Turbine Component Under Time-Varying Costs
,”
Eur. J. Oper. Res.
,
300
(
3
), pp.
979
991
.
16.
Röckmann
,
C.
,
Lagerveld
,
S.
, and
Stavenuiter
,
J.
,
2017
, “Operation and Maintenance Costs of Offshore Wind Farms and Potential Multi-Use Platforms in the Dutch North Sea,”
Aquaculture Perspective of Multi-Use Sites in the Open Ocean
,
Springer
,
Cham
, pp.
97
113
.
17.
Heo
,
T.
,
Nguyen
,
P. T.
,
Manuel
,
L.
,
Collu
,
M.
,
Abhinav
,
K.
,
Xu
,
X.
, and
Brizzi
,
G.
,
2020
, “
Operations and Maintenance for Multipurpose Offshore Platforms Using Statistical Weather Window Analysis
,”
Global Oceans 2020: Singapore – U.S. Gulf Coast
,
Biloxi, MS
,
Oct. 5–30
, pp.
1
7
.
18.
Sutton
,
R. S.
, and
Barto
,
A. G.
,
2018
,
Reinforcement Learning: An Introduction
,
MIT Press
,
Cambridge, MA
.
19.
Papakonstantinou
,
K. G.
, and
Shinozuka
,
M.
,
2014
, “
Planning Structural Inspection and Maintenance Policies Via Dynamic Programming and Markov Processes. Part I: Theory
,”
Reliab. Eng. Syst. Saf.
,
130
, pp.
202
213
.
20.
FAO
,
2016
, “
The State of World Fisheries and Aquaculture, 2016
.”
21.
Krkošek
,
M.
,
Lewis
,
M. A.
, and
Volpe
,
J. P.
,
2005
, “
Transmission Dynamics of Parasitic Sea Lice From Farm to Wild Salmon
,”
Proc. R. Soc. B: Biol. Sci.
,
272
(
1564
), pp.
689
696
.
22.
Hjelt
,
K. A.
,
2000
, “
Norwegian Regulation System and the History of the Norwegian Salmon Farming Industry
,” 1.
International Symposium on Cage Aquaculture in Asia
,
Tungkang, Pingtung (Taiwan)
,
Nov. 2–6 1999
, AFS; WAS-SC.
23.
Moran
,
D.
, and
Fofana
,
A.
,
2007
, “
An Economic Evaluation of the Control of Three Notifiable Fish Diseases in the United Kingdom
,”
Prev. Vet. Med.
,
80
(
2–3
), pp.
193
208
.
24.
Asche
,
F.
,
Hansen
,
H.
,
Tveteras
,
R.
, and
Tveterås
,
S.
,
2009
, “
The Salmon Disease Crisis in Chile
,”
Mar. Res. Econ.
,
24
(
4
), pp.
405
411
.
25.
Aunsmo
,
A.
,
Valle
,
P. S.
,
Sandberg
,
M.
,
Midtlyng
,
P. J.
, and
Bruheim
,
T.
,
2010
, “
Stochastic Modelling of Direct Costs of Pancreas Disease (PD) in Norwegian Farmed Atlantic Salmon (Salmo Salar L.)
,”
Prev. Vet. Med.
,
93
(
2–3
), pp.
233
241
.
26.
Liu
,
Y.
,
Sumaila
,
U. R.
, and
Volpe
,
J. P.
,
2011
, “
Potential Ecological and Economic Impacts of Sea Lice From Farmed Salmon on Wild Salmon Fisheries
,”
Ecol. Econ.
,
70
(
10
), pp.
1746
1755
.
27.
Olaussen
,
J. O.
,
Liu
,
Y.
, and
Skonhoft
,
A.
,
2013
, “
Wild Salmon Harvest With Farmed Salmon Induced Mortality
,”
BIOECON Conference
,
Cambridge, UK
,
Sept. 18–20
.
28.
Krkošek
,
M.
,
Revie
,
C. W.
,
Gargan
,
P. G.
,
Skilbrei
,
O. T.
,
Finstad
,
B.
, and
Todd
,
C. D.
,
2013
, “
Impact of Parasites on Salmon Recruitment in the Northeast Atlantic Ocean
,”
Proc. R. Soc. B: Biol. Sci.
,
280
(
1750
), p.
20122359
.
29.
Vollset
,
K. W.
,
Krontveit
,
R. I.
,
Jansen
,
P. A.
,
Finstad
,
B.
,
Barlaup
,
B. T.
,
Skilbrei
,
O. T.
,
Krkošek
,
M.
, et al.,
2016
, “
Impacts of Parasites on Marine Survival of Atlantic Salmon: A Meta-Analysis
,”
Fish Fisheries
,
17
(
3
), pp.
714
730
.
30.
Costello
,
M. J.
,
2006
, “
Ecology of Sea Lice Parasitic on Farmed and Wild Fish
,”
Trend Parasitol.
,
22
(
10
), pp.
475
483
.
31.
Revie
,
C.
,
Dill
,
L.
,
Finstad
,
B.
, and
Todd
,
C.
,
2009
, Sea Lice Working Group Report. Norsk institutt for naturforskning (NINA).
32.
Liu
,
Y.
,
2014
, “
Estimating Costs of Sea Lice Control Strategy in Norway
,”
Prev. Vet. Med.
,
117
(
3–4
), pp.
469
477
.
33.
Godwin
,
S. C.
,
Krkosek
,
M.
,
Reynolds
,
J. D.
, and
Bateman
,
A. W.
,
2021
, “
Sea-Louse Abundance on Salmon Farms in Relation to Parasite-Control Policy and Climate Change
,”
ICES J. Mar. Sci.
,
78
(
1
), pp.
377
387
.
34.
Fast
,
M. D.
,
2014
, “
Fish Immune Responses to Parasitic Copepod (Namely Sea Lice) Infection
,”
Dev. Comparat. Immunol.
,
43
(
2
), pp.
300
312
.
35.
Mustafa
,
A.
,
Speare
,
D. J.
,
Daley
,
J.
,
Conboy
,
G. A.
,
Burka
,
J. F.
,
2000
, “
Enhanced Susceptibility of Seawater Cultured Rainbow Trout, Oncorhynchus Mykiss (walbaum), to the Microsporidian Loma Salmonae During a Primary Infection With the Sea Louse, Lepeophtheirus Salmonis.
,”
J. Fish Dis.
,
23
(
5
), pp.
337
341
.
36.
Krkošek
,
M.
,
Connors
,
B. M.
,
Ford
,
H.
,
Peacock
,
S.
,
Mages
,
P.
,
Ford
,
J. S.
,
Morton
,
A.
, et al.,
2011
, “
Fish Farms, Parasites, and Predators: Implications for Salmon Population Dynamics
,”
Ecol. Appl.
,
21
(
3
), pp.
897
914
.
37.
Krkošek
,
M.
,
2010
, “
Sea Lice and Salmon in Pacific Canada: Ecology and Policy
,”
Front. Ecol. Environ.
,
8
(
4
), pp.
201
209
.
38.
Overton
,
K.
,
Dempster
,
T.
,
Oppedal
,
F.
,
Kristiansen
,
T. S.
,
Gismervik
,
K.
, and
Stien
,
L. H.
,
2019
, “
Salmon Lice Treatments and Salmon Mortality in Norwegian Aquaculture: A Review
,”
Rev. Aquacult.
,
11
(
4
), pp.
1398
1417
.
39.
Østevik
,
L.
,
Stormoen
,
M.
,
Evensen
,
Ø.
,
Xu
,
C.
,
Lie
,
K.-I.
,
Nødtvedt
,
A.
,
Rodger
,
H.
,
Skagøy
,
A.
,
Manji
,
F.
, and
Alarcón
,
M.
,
2022
, “
Effects of Thermal and Mechanical Delousing on Gill Health of Farmed Atlantic Salmon (Salmo Salar L.)
,”
Aquaculture
,
552
, p.
738019
.
You do not currently have access to this content.