Abstract

Wave-induced motions and loads on a moored and articulated multibody offshore structure are numerically analyzed, where a coupled mooring–joint–viscous flow solver is used to count for mooring dynamics, joint restrictions, nonlinear rigid body motions, and viscous flow effects. The considered concepts consist of two modular floating structures (MFSs) connected by two types of connections, namely, a rigid joint and a flexible joint, and positioned by four symmetrical catenary mooring lines. The analyzed responses comprised multibody motions as well as associated forces acting in the hinged joints and the mooring lines. Results indicate that surge motions of articulated bodies are almost identical to each other, whereas the effects of the joint on heave motions are not pronounced. However, highly dynamic pitch motions between two hinged MFSs are observed. Apart from motion responses, forces acting on the hinged joint and the mooring lines are estimated. The importance of wave nonlinearity and higher order components is identified by studying waves with different steepness. The coupled mooring–joint–viscous flow solver demonstrates its capability to predict wave-induced motions and loads on a moored multibody offshore structure articulated by various types of joints.

References

1.
Suzuki
,
H.
,
Bhattacharya
,
B.
,
Fujikubo
,
M.
,
Hudson
,
D.
,
Riggs
,
H.
,
Seto
,
H.
,
Shin
,
H.
,
Shugar
,
T.
,
Yasuzawa
,
Y.
, and
Zong
,
Z.
,
2006
, “
ISSC Committee VI. 2: Very Large Floating Structures
,”
Proceedings of 16th International Ship and Offshore Structures Congress
,
University of Southampton, UK
,
Aug. 20–25
, pp.
391
442
.
2.
Lamas-Pardo
,
M.
,
Iglesias
,
G.
, and
Carral
,
L.
,
2015
, “
A Review of Very Large Floating Structures (VLFS) for Coastal and Offshore Uses
,”
Ocean. Eng.
,
109
(
15
), pp.
677
690
.
3.
Watanabe
,
E.
,
Utsunomiya
,
T.
, and
Wang
,
C.
,
2004
, “
Hydroelastic Analysis of Pontoon-Type VLFS: A Literature Survey
,”
Eng. Struct.
,
26
(
2
), pp.
245
256
.
4.
Kashiwagi
,
M.
,
2000
, “
Research on Hydroelastic Responses of VLFS: Recent Progress and Future Work
,”
Int. J. Offshore and Polar Eng.
,
10
(
2
), pp.
81
90
.
5.
Wang
,
C.
,
Tay
,
Z.
,
Takagi
,
K.
, and
Utsunomiya
,
T.
,
2010
, “
Literature Review of Methods for Mitigating Hydroelastic Response of Vlfs Under Wave Action
,”
Appl. Mech. Rev.
,
63
(
3
), p.
030802
.
6.
Ren
,
N.
,
Zhang
,
C.
,
Magee
,
A. R.
,
Hellan
,
Ø.
,
Dai
,
J.
, and
Ang
,
K. K.
,
2019
, “
Hydrodynamic Analysis of a Modular Multi-Purpose Floating Structure System With Different Outermost Connector Types
,”
Ocean. Eng.
,
176
(
15
), pp.
158
168
.
7.
Flikkema
,
M.
, and
Waals
,
O.
,
2019
, “
Space@ Sea The Floating Solution
,”
Front. Mar. Sci.
,
6
(
1
), p.
553
.
8.
Shabana
,
A.
,
2020
,
Dynamics of Multibody Systems
,
Cambridge University Press
,
Cambridge, UK
.
9.
Maeda
,
H.
,
Maruyama
,
S.
,
Inoue
,
R.
,
Watanabe
,
K.
,
Togawa
,
S.
, and
Suzuki
,
F.
,
1979
, “
On the Motions of a Floating Structure Which Consists of Two or Three Blocks With Rigid or Pin Joints
,”
J. Soc. Naval Archit. Jpn
,
1979
(
145
), pp.
71
78
.
10.
Michailides
,
C.
,
Loukogeorgaki
,
E.
, and
Angelides
,
D. C.
,
2013
, “
Response Analysis and Optimum Configuration of a Modular Floating Structure With Flexible Connectors
,”
Appl. Ocean. Res.
,
43
(
1
), pp.
112
130
.
11.
Riggs
,
H.
,
Ertekin
,
R.
, and
Mills
,
T.
,
2000
, “
A Comparative Study of RMFC and FEA Models for the Wave-Induced Response of a Mob
,”
Mar. Struct.
,
13
(
4–5
), pp.
217
232
.
12.
Zhang
,
H.
,
Xu
,
D.
,
Lu
,
C.
,
Qi
,
E.
,
Tian
,
C.
, and
Wu
,
Y.
,
2017
, “
Connection Effect on Amplitude Death Stability of Multi-module Floating Airport
,”
Ocean. Eng.
,
129
(
1
), pp.
46
56
.
13.
Jiang
,
C.
,
el Moctar
,
O.
, and
Schellin
,
T. E.
,
2021
, “
Hydrodynamic Sensitivity of Moored and Articulated Multibody Offshore Structures in Waves
,”
J. Mar. Sci. Eng.
,
9
(
9
), p.
1028
.
14.
Ghesmi
,
M.
,
von Graefe
,
A.
,
Shigunov
,
V.
,
Friedhoff
,
B.
, and
el Moctar
,
O.
,
2019
, “
Comparison and Validation of Numerical Methods to Assess Hydrodynamic Loads on Mechanical Coupling of Multiple Bodies
,”
Ship Technol. Res.
,
66
(
1
), pp.
9
21
.
15.
Jiang
,
C.
,
el Moctar
,
O.
, and
Schellin
,
T. E.
,
2022
, “
Capability of a Potential-Flow Solver to Analyze Articulated Multibody Offshore Modules
,”
Ocean. Eng.
,
266
(
1
), p.
112754
.
16.
Jiang
,
C.
,
el Moctar
,
O.
, and
Schellin
,
T. E.
,
2019
, “
Prediction of Hydrodynamic Damping of Moored Offshore Structures Using CFD
,”
International Conference on Offshore Mechanics and Arctic Engineering
,
Glasgow, Scotland, UK
,
June 9–14
,
vol. 58776, p. V002T08A047
.
17.
Seithe
,
G.
, and
el Moctar
,
O.
,
2019
, “
Wave-Induced Motions of Moored and Coupled Multi-Body Offshore Structures
,”
11th International Workshop on Ship and Marine Hydrodynamics (IWSH2019)
,
Hamburg, Germany
,
Sept. 22–25
, pp.
1
13
.
18.
Jiang
,
C.
, and
el Moctar
,
O.
,
2022
, “
Extension of a Coupled Mooring–Viscous Flow Solver to Account for Mooring–Joint–Multibody Interaction in Waves
,”
J. Ocean Eng. Mar. Energy
,
1
(
1
), pp.
1
19
.
19.
Jiang
,
C.
,
2021
, “
Mathematical Modelling of Wave-Induced Motions and Loads on Moored Offshore Structures
,” Ph.D. thesis, University of Duisburg-Essen, Duisburg, Germany.
20.
Hirt
,
C. W.
, and
Nichols
,
B. D.
,
1981
, “
Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries
,”
J. Comput. Phys.
,
39
(
1
), pp.
201
225
.
21.
Rusche
,
H.
,
2003
, “
Computational Fluid Dynamics of Dispersed Two-Phase Flows at High Phase Fractions
,” Ph.D. thesis,
Imperial College London (University of London)
,
London
.
22.
el Moctar
,
O.
,
Ley
,
J.
,
Oberhagemann
,
J.
, and
Schellin
,
T.
,
2017
, “
Nonlinear Computational Methods for Hydroelastic Effects of Ships in Extreme Seas
,”
Ocean. Eng.
,
130
(
15
), pp.
659
673
.
23.
Featherstone
,
R.
,
2014
,
Rigid Body Dynamics Algorithms
,
Springer
,
New York
.
24.
Hall
,
M.
, and
Goupee
,
A.
,
2015
, “
Validation of a Lumped-Mass Mooring Line Model With Deepcwind Semisubmersible Model Test Data
,”
Ocean. Eng.
,
104
(
1
), pp.
590
603
.
25.
Jiang
,
C.
,
el Moctar
,
O.
,
Paredes
,
G. M.
, and
Schellin
,
T. E.
,
2020
, “
Validation of a Dynamic Mooring Model Coupled With a RANS Solver
,”
Marine Structures
,
72
(
1
), p.
102783
.
26.
Wu
,
M.
,
Stratigaki
,
V.
,
Troch
,
P.
,
Altomare
,
C.
,
Verbrugghe
,
T.
,
Crespo
,
A.
,
Cappietti
,
L.
,
Hall
,
M.
, and
Gómez-Gesteira
,
M.
,
2019
, “
Experimental Study of a Moored Floating Oscillating Water Column Wave-Energy Converter and of a Moored Cubic Box
,”
Energies
,
12
(
10
), p.
1834
.
27.
Higuera
,
P.
,
Lara
,
J. L.
, and
Losada
,
I. J.
,
2013
, “
Realistic Wave Generation and Active Wave Absorption for Navier–Stokes Models: Application to Openfoam®
,”
Coast. Eng.
,
71
(
1
), pp.
102
118
.
28.
Domínguez
,
J. M.
,
Crespo
,
A. J.
,
Hall
,
M.
,
Altomare
,
C.
,
Wu
,
M.
,
Stratigaki
,
V.
,
Troch
,
P.
,
Cappietti
,
L.
, and
Gómez-Gesteira
,
M.
,
2019
, “
SPH Simulation of Floating Structures With Moorings
,”
Coast. Eng.
,
153
(
1
), p.
103560
.
29.
Eça
,
L.
, and
Hoekstra
,
M.
,
2014
, “
A Procedure for the Estimation of the Numerical Uncertainty of Cfd Calculations Based on Grid Refinement Studies
,”
J. Comput. Phys.
,
262
(
1
), pp.
104
130
.
30.
Xing
,
T.
, and
Stern
,
F.
,
2010
, “
Factors of Safety for Richardson Extrapolation
,”
ASME J. Fluids Eng.
,
132
(
6
), p.
061403
.
31.
Phillips
,
T. S.
, and
Roy
,
C. J.
,
2014
, “
Richardson Extrapolation-Based Discretization Uncertainty Estimation for Computational Fluid Dynamics
,”
ASME J. Fluids Eng.
,
136
(
12
), p.
121401
.
32.
Jiang
,
C.
,
el Moctar
,
O.
,
Schellin
,
T. E.
, and
Paredes
,
G. M.
,
2021
, “
Comparative Study of Mathematical Models for Mooring Systems Coupled With CFD
,”
Ships Offshore Struct.
,
16
(
9
), pp.
942
954
.
You do not currently have access to this content.