Abstract

A two-dimensional (2D) simplified model of the very large floating structure (VLFS) is formulated based on Huston's interpretation of the Kane methodology. In this proposed model, the VLFS is considered as a series of discrete floating bodies connected by elastic hinges. The rotation stiffness of elastic hinges has a great influence on the dynamic responses of VLFS and its value is determined based on the vertical displacements equivalent between the simply supported beam model and the elastically hinged multiple bodies model with the same boundary conditions on a concentrated load. Reduced Kane equations are used in the actual dynamic analysis, once initial conditions and mechanical analysis of the system have been formulated. Validation of the Kane-based method and the reliability of the corresponding program developed are established by several comparative studies on a continuous structure and a hinged structure with three parts. The predictions based on the proposed method are essentially identical to the model test data and calculation results provided by related literature.

References

1.
Ding
,
J.
,
Wu
,
Y. S.
,
Xie
,
Z. Y.
,
Yang
,
W. N.
,
Wang
,
S. Y.
,
Yun
,
J.
, and
Yu
,
T.
,
2021
, “
Overview: Research on Hydroelastic Responses of VLFS in Complex Environments
,”
Mar. Struct.
,
78
, p.
102978
.
2.
Liu
,
Y. N.
,
Molin
,
B.
,
Kimmoun
,
O.
,
Remy
,
F.
, and
Rouault
,
M. C.
,
2011
, “
Experimental and Numerical Study of the Effect of Variable Bathymetry on the Slow-Drift Wave Response of Floating Bodies
,”
Appl. Ocean Res.
,
33
(
3
), pp.
199
207
.
3.
Wei
,
W.
,
Fu
,
S. X.
,
Moan
,
T.
,
Song
,
C. H.
, and
Ren
,
T. X.
,
2018
, “
A Time-Domain Method for Hydroelasticity of Very Large Floating Structures in Inhomogeneous Sea Conditions
,”
Mar. Struct.
,
57
, pp.
180
192
.
4.
Yang
,
P.
,
Li
,
J. R.
,
Gu
,
X. K.
, and
Wu
,
D. W.
,
2019
, “
Application of the 3D Time-Domain Green's Function for Finite Water Depth in Hydroelastic Mechanics
,”
Ocean Eng.
,
189
, p.
106386
.
5.
Ding
,
J.
,
Geng
,
Y. C.
,
Xu
,
S. W.
,
Yang
,
W. N.
, and
Xie
,
Z. Y.
,
2021
, “
Experimental Study on Responses of an 8-Module VLFS Considering Different Encounter Wave Conditions
,”
Mar. Struct.
,
78
(
2
), p.
102959
.
6.
Kyozuka
,
Y.
,
Kato
,
S.
, and
Nakagawa
,
H.
,
2001
, “
A Numerical Study on Environmental Impact Assessment of Mega-Float of Japan
,”
Mar. Struct.
,
14
(
1–2
), pp.
147
161
.
7.
McAllister
,
K. R.
,
1997
, “
Mobile Offshore Bases-An Overview of Recent Research
,”
J. Mar. Sci. Technol.
,
2
(
3
), pp.
173
181
.
8.
Wu
,
Y. S.
,
1984
, “
Hydroelasticity of Floating Bodies
,”
Ph.D. Thesis
,
Brunel University
,
London, UK
, pp.
107
270
.
9.
Price
,
W. G.
, and
Wu
,
Y. S.
,
1985
, “
Hydroelasticity of Marine Structures
,”
Theor. Appl. Mech.
, pp.
311
337
.
10.
Riggs
,
H. R.
,
Ertekin
,
R. C.
, and
Mills
,
T. R. J.
,
2000
, “
A Comparative Study of RMFC and FEA Models for the Wave-Induced Response of a MOB
,”
Mar. Struct.
,
13
(
4–5
), pp.
217
232
.
11.
Kim
,
B. W.
,
Hong
,
S. Y.
,
Kyoung
,
J. H.
, and
Cho
,
S. K.
,
2007
, “
Evaluation of Bending Moments and Shear Forces at Unit Connections of Very Large Floating Structures Using Hydroelastic and Rigid Body Analyses
,”
Ocean Eng.
,
34
(
11–12
), pp.
1668
1679
.
12.
Yoon
,
J. S.
,
Cho
,
S. P.
,
Jiwinangun
,
R. G.
, and
Lee
,
P. S.
,
2014
, “
Hydroelastic Analysis of Floating Plates With Multiple Hinge Connections in Regular Waves
,”
Mar. Struct.
,
36
, pp.
65
87
.
13.
Kang
,
H. Y.
, and
Kim
,
M. H.
,
2017
, “
Time-Domain Hydroelastic Analysis With Efficient Load Estimation for Random Waves
,”
Int. J. Nav. Archit. Ocean Eng.
,
9
(
3
), pp.
266
281
.
14.
Lee
,
I. J.
,
Kim
,
E. S.
, and
Kwon
,
S. H.
,
2020
, “
A 3D Direct Coupling Method for Steady Ship Hydroelastic Analysis
,”
J. Fluid Struct.
,
94
, p.
102891
.
15.
Hu
,
J. J.
,
Wu
,
Y. S.
,
Tian
,
C.
,
Wang
,
X. L.
, and
Zhang
,
F.
,
2012
, “
Hydroelastic Analysis and Model Tests on the Structural Responses and Fatigue Behaviours of an Ultra-Large Ore Carrier in Waves
,”
Proc. Inst. Mech. Eng. M: J. Eng. Marit. Environ.
,
226
(
2
), pp.
135
155
.
16.
Yang
,
P.
,
Li
,
Z. W.
,
Wu
,
Y. S.
,
Wen
,
W.
,
Ding
,
J.
, and
Zhang
,
Z. W.
,
2019
, “
Boussinesq-Hydroelasticity Coupled Model to Investigate Hydroelastic Responses and Connector Loads of an Eight-Module VLFS Near Islands in Time Domain
,”
Ocean Eng.
,
190
, p.
106418
.
17.
Feng
,
M. W.
,
Sun
,
Z. C.
,
Liang
,
S. X.
, and
Liu
,
B. J.
,
2020
, “
Hydroelastic Response of VLFS With an Attached Submerged Horizontal Solid/Porous Plate Under Wave Action
,”
China Ocean Eng.
,
34
(
4
), pp.
451
462
.
18.
Karperaki
,
A. E.
,
Belibassakis
,
K. A.
, and
Papathanasiou
,
T. K.
,
2016
, “
Time-Domain, Shallow-Water Hydroelastic Analysis of VLFS Elastically Connected to the Seabed
,”
Mar. Struct.
,
48
, pp.
33
51
.
19.
Yang
,
P.
,
Liu
,
X. L.
,
Wang
,
Z. D.
,
Zong
,
Z.
,
Tian
,
C.
, and
Wu
,
Y. S.
,
2019
, “
Hydroelastic Responses of a 3-Module VLFS in the Waves Influenced by Complicated Geographic Environment
,”
Ocean Eng.
,
184
, pp.
121
133
.
20.
Dai
,
J.
,
Leira
,
B. J.
,
Moan
,
T.
, and
Kvittem
,
M. I.
,
2020
, “
Inhomogeneous Wave Load Effects on a Long, Straight and Side-Anchored Floating Pontoon Bridge
,”
Mar. Struct.
,
72
, p.
102763
.
21.
Lu
,
D.
,
Fu
,
S. X.
,
Zhang
,
X. T.
,
Guo
,
F.
, and
Gao
,
Y.
,
2019
, “
A Method to Estimate the Hydroelastic Behaviour of VLFS Based on Multi-Rigid-Body Dynamics and Beam Bending
,”
Ships Offshore Struc.
,
14
(
4
), pp.
354
362
.
22.
Ding
,
J.
,
Tian
,
C.
,
Wu
,
Y. S.
,
Wang
,
X. F.
,
Liu
,
X. L.
, and
Zhang
,
K.
,
2019
, “
A Simplified Method to Estimate the Hydroelastic Responses of VLFS in the Inhomogeneous Waves
,”
Ocean Eng.
,
172
, pp.
434
445
.
23.
Chen
,
Z. Y.
,
Cong
,
P. W.
, and
Gui
,
H. B.
,
2020
, “
A Simplified Method for Nonlinear Hydroelastic Responses of a Truss-Type VLFS in Oblique Seas Based on Orthotropic Plate Model
,”
Ships Offshore Struc.
,
17
(
4
), pp.
757
771
.
24.
Huston
,
R. L.
,
1990
,
Multibody Dynamics
,
Butterworth-Heinemann
,
Stoneham
, pp.
81
227
.
25.
Kane
,
T. R.
, and
Levinson
,
D. A.
,
1985
,
Dynamics: Theory and Applications
,
McGraw-Hill Book Company
,
New York
, pp.
99
159
.
26.
Beer
,
F. P.
,
Johnston
,
E. R.
,
Dewolf
,
J. T.
, and
Mazurek
,
D. F.
,
2013
,
Mechanics of Materials
,
China Machine Press
,
Beijing, China
, pp.
A20
A20
.
27.
Shen
,
Q.
,
Chen
,
X. J.
, and
Jiang
,
Z. B.
,
2011
,
Dynamic Analysis on Fluid-Solid Coupling of Floating Structure and Floating Multi-Body System
,
Science Press
,
Beijing, China
, pp.
71
72
.
28.
Falnes
,
J.
,
2002
,
Ocean Waves and Oscillating Systems Linear Interactions Including Wave-Energy Extraction
,
Cambridge University Press
,
Cambridge, UK
, pp.
71
98
.
29.
Faltinsen
,
O. M.
,
1993
,
Sea Loads on Ships and Offshore Structures
,
Cambridge University Press
,
Cambridge, UK
, pp.
41
43
.
30.
Yago
,
K.
, and
Endo
,
H.
,
1996
, “
On the Hydoroelastic Response of Box-Shaped Floating Structure With Shallow Draft (Tank Test With Large Scale Model)
,”
J. Soc. Naval Archit. Jpn
,
180
(
180
), pp.
341
352
.
31.
Huang
,
H.
,
Chen
,
X. J.
,
Liu
,
J. Y.
,
Miao
,
Y. J.
, and
Ji
,
S.
,
2021
, “
A Method to Estimate Dynamic Responses of VLFS Based on Multi-Floating-Module Model Connected by Elastic Hinges
,”
China Ocean Eng.
,
35
(
5
), pp.
687
699
.
32.
Yago
,
K.
, and
Hara
,
S.
,
1998
, “
On the Hydoroelastic Response of Box-Shaped Floating Structure With Shallow Draft (Response of Elastic Units Connected With Pins or Beams)
,”
J. Soc. Naval Archit. Jpn
,
183
(
183
), pp.
227
237
.
33.
Endo
,
H.
, and
Yago
,
K.
,
1999
, “
Time History Response of a Large Floating Structure Subjected to Dynamic Load
,”
J. Soc. Naval Archit. Jpn
,
186
(
186
), pp.
369
376
.
You do not currently have access to this content.