Abstract

The ship waves and related hydrodynamics over a sloping bed are investigated numerically in this paper, and we aim to clarify the characteristics of ship wave deformation and its hydrodynamic effects. Laboratory experiments are performed with a self-propelled ship model to produce various wave conditions over a sloping bed in the water flume, providing the datasets for validation works of numerical simulations. With the implementation of model sensitivity analysis, numerical calculations of ship-induced waves and flow velocities are completed using the non-hydrostatic model in XBeach and compared against experimental measurements. The results show that the model is not only able to calculate primary and secondary waves well, but also the ship-induced near-bed velocity when ship waves are prominent in the water flume. Further numerical investigations of ship wave transformation and associated hydrodynamic effects are conducted over a sloping bed under different ship speed conditions. The ship wave height and run-up variations along the cross-shore transect clearly indicate the wave energy dissipation due to breaking and bottom friction. The ship-induced flow velocities are found to be mainly contributed by the low-frequency primary waves in our numerical experiments.

References

1.
De Roo
,
S.
, and
Troch
,
P.
,
2013
, “
Field Monitoring of Ship Wave Action on Environmentally Friendly Bank Protection in a Confined Waterway
,”
J. Waterw. Port Coastal Ocean Eng.
,
139
(
6
), pp.
527
534
.
2.
Bellafiore
,
D.
,
Zaggia
,
L.
,
Broglia
,
R.
,
Ferrarin
,
C.
,
Barbariol
,
F.
,
Zaghi
,
S.
,
Lorenzetti
,
G.
,
Manfe
,
G.
,
De Pascalis
,
F.
, and
Benetazzo
,
A.
,
2018
, “
Modeling Ship-Induced Waves in Shallow Water Systems: The Venice Experiment
,”
Ocean Eng
,
155
, pp.
227
239
.
3.
Ulm
,
M.
,
Niehüser
,
S.
,
Kondziella
,
B.
,
Arns
,
A.
,
Jensen
,
J.
, and
Uliczka
,
K.
,
2020
, “
Field Measurements in the Kiel Canal, Germany: Ship Waves, Drawdown and Sediment Transport
,”
J. Waterw. Port Coastal Ocean Eng.
,
146
(
4
), p.
04020020
.
4.
Parnell
,
K. E.
,
Soomere
,
T.
,
Zaggia
,
L.
,
Rodin
,
A.
,
Lorenzetti
,
G.
,
Rapaglia
,
J.
, and
Scarpa
,
G. M.
,
2015
, “
Ship-Induced Solitary Riemann Waves of Depression in Venice Lagoon
,”
Phys. Lett. A
,
379
(
6
), pp.
555
559
.
5.
Fleit
,
G.
, and
Baranya
,
S.
,
2021
, “
Acoustic Measurement of Ship Wave-Induced Sediment Resuspension in a Large River
,”
J. Waterw. Port Coastal Ocean Eng.
,
147
(
2
), p.
04021001
.
6.
Didenkulova
,
I.
,
Parnell
,
K. E.
,
Soomere
,
T.
,
Pelinovsky
,
E.
, and
Kurennoy
,
D.
,
2009
, “
Shoaling and Runup of Long Waves Induced by High-Speed Ferries in Tallinn Bay
,”
J. Coast. Res.
,
56
, pp.
491
495
.
7.
Gabel
,
F.
,
Lorenz
,
S.
, and
Stoll
,
S.
,
2017
, “
Effects of Ship-Induced Waves on Aquatic Ecosystems
,”
Sci. Total Environ.
,
601
, pp.
926
939
.
8.
Soomere
,
T.
,
2007
, “
Nonlinear Components of Ship Wake Waves
,”
Appl. Mech. Rev.
,
60
(
3
), pp.
120
138
.
9.
Parnell
,
K. E.
,
Zaggia
,
L.
,
Soomere
,
T.
,
Lorenzetti
,
G.
, and
Scarpa
,
G. M.
,
2016
, “
Depression Waves Generated by Large Ships in the Venice Lagoon
,”
J. Coast. Res.
,
75
(
10075
), pp.
907
911
.
10.
Bertram
,
V.
,
2000
,
Practical Ship Hydrodynamics
,
Butterworth-Heinemann
,
Oxford
, pp.
1
270
.
11.
Fleit
,
G.
,
Baranya
,
S.
,
Rüther
,
N.
,
Bihs
,
H.
,
Krámer
,
T.
, and
Józsa
,
J.
,
2016
, “
Investigation of the Effects of Ship Induced Waves on the Littoral Zone With Field Measurements and CFD Modeling
,”
Water
,
8
(
7
), p.
300
.
12.
Fleit
,
G.
,
Baranya
,
S.
,
Krámer
,
T.
,
Bihs
,
H.
, and
Józsa
,
J.
,
2019
, “
A Practical Framework to Assess the Hydrodynamic Impact of Ship Waves on River Banks
,”
River Res. Appl.
,
35
(
9
), pp.
1428
1442
.
13.
Dempwolff
,
L. C.
,
Melling
,
G.
,
Windt
,
C.
,
Lojek
,
O.
,
Martin
,
T.
,
Holzwarth
,
I.
,
Bihs
,
H.
, and
Goseberg
,
N.
,
2022
, “
Loads and Effects of Ship-Generated, Drawdown Waves in Confined Waterways-A Review of Current Knowledge and Methods
,”
J. Coastal Hydraul. Struct.
,
2
, pp.
2
46
.
14.
Almström
,
B.
, and
Larson
,
M.
,
2020
, “
Measurements and Analysis of Primary Ship Waves in the Stockholm Archipelago, Sweden
,”
J. Mar. Sci. Eng.
,
8
(
10
), p.
743
.
15.
Mao
,
L. L.
,
Chen
,
Y. M.
, and
Li
,
X.
,
2020
, “
Characterizing Ship-Induced Hydrodynamics in a Heavy Shipping Traffic Waterway Via Intensified Field Measurements
,”
Water Sci. Eng.
,
13
(
4
), pp.
329
338
.
16.
Lee
,
S. J.
,
Yates
,
G. T.
, and
Wu
,
T. Y.
,
1989
, “
Experiments and Analyses of Upstream-Advancing Solitary Waves Generated by Moving Disturbances
,”
J. Fluid Mech.
,
199
, pp.
569
593
.
17.
Torsvik
,
T.
,
Pedersen
,
G.
, and
Dysthe
,
K.
,
2009
, “
Waves Generated by a Pressure Disturbance Moving in a Channel With a Variable Cross-Sectional Topography
,”
J. Waterw. Port Coastal Ocean Eng.
,
135
(
3
), pp.
120
123
).
18.
Dam
,
K. T.
,
Tanimoto
,
K.
, and
Fatimah
,
E.
,
2008
, “
Investigation of Ship Waves in a Narrow Channel
,”
J. Mar. Sci. Technol.
,
13
(
3
), pp.
223
230
.
19.
Gharbi
,
S.
,
Valkov
,
G.
,
Hamdi
,
S.
, and
Nistor
,
I.
,
2010
, “
Numerical and Field Study of Ship-Induced Waves Along the St. Lawrence Waterway, Canada
,”
Nat. Hazards
,
54
(
3
), pp.
605
621
.
20.
Terziev
,
M.
,
Tezdogan
,
T.
,
Oguz
,
E.
,
Gourlay
,
T.
,
Demirel
,
Y. K.
, and
Incecik
,
A.
,
2018
, “
Numerical Investigation of the Behaviour and Performance of Ships Advancing Through Restricted Shallow Waters
,”
J. Fluids Struct.
,
76
, pp.
185
215
.
21.
Smit
,
P.
,
Stelling
,
G.
,
Roelvink
,
J.
,
Van Thiel de Vries
,
J.
,
McCall
,
R.
,
Van Dongeren
,
A.
,
Zwinkels
,
C.
, and
Jacobs
,
R.
,
2010
, “
XBeach: Non-Hydrostatic Model: Validation, Verification and Model Description
,”
Technical Report, Delft University of Technology, Delft, The Netherlands
.
22.
Jong
,
D.
,
Roelvink
,
D.
,
Reijmerink
,
S. P.
, and
Breederveld
,
C.
,
2013
, “
Numerical Modelling of Passing-Ship Effects in Complex Geometries and on Shallow Water
,”
Smart Rivers Conference
,
Liège, Belgium
,
Sept. 23–27
.
23.
Zhou
,
M. G.
,
Zou
,
Z. J.
, and
Roelvink
,
D.
,
2015
, “
Prediction of Ship-Ship Interactions in Ports by a Non-Hydrostatic Model
,”
J. Hydrodyn. Ser. B
,
27
(
6
), pp.
824
834
.
24.
Almström
,
B.
,
Roelvink
,
D.
, and
Larson
,
M.
,
2021
, “
Predicting Ship Waves in Sheltered Waterways–An Application of XBeach to the Stockholm Archipelago, Sweden
,”
Coast. Eng.
,
170
, p.
104026
.
25.
He
,
C. Y.
,
Ju
,
L. H.
, and
Feng
,
W. B.
,
2012
, “
Field Observation and Model Test on Ship Waves of Sunan Canal
,”
Port Waterw. Eng.
,
8
, pp.
130
135
.
26.
Mao
,
L. L.
,
Chen
,
Y. M.
, and
Li
,
X.
,
2020
, “
Time-Frequency Analysis of Ship Waves in Inland Waterways Using Wavelet Transform
,”
J. Southeast Univ.
,
50
, pp.
1115
1122
.
27.
Stelling
,
G.
, and
Zijlema
,
M.
,
2003
, “
An Accurate and Efficient Finite-Difference Algorithm for Non-Hydrostatic Free-Surface Flow With Application to Wave Propagation
,”
Int. J. Numer. Meth. Fluids
,
43
(
1
), pp.
1
23
.
28.
Smagorinsky
,
J.
,
1963
, “
General Circulation Experiments With the Primitive Equations: I. The Basic Experiment
,”
Mon. Weather Rev.
,
91
(
3
), pp.
99
164
.
29.
de Ridder
,
M. P.
,
Smit
,
P. B.
,
van Dongeren
,
A. R.
,
McCall
,
R. T.
,
Nederhoff
,
K.
, and
Reniers
,
A. J. H. M.
,
2021
, “
Efficient Two-Layer Non-Hydrostatic Wave Model With Accurate Dispersive Behavior
,”
Coastal Eng.
,
164
, p.
103808
.
30.
Andrews
,
D. G.
, and
McIntyre
,
M. E.
,
1978
, “
An Exact Theory of Nonlinear Waves on a Lagrangian-Mean Flow
,”
J. Fluid Mech.
,
89
(
4
), pp.
609
646
.
31.
Mao
,
L. L.
, and
Chen
,
Y. M.
,
2020
, “
Investigation of Ship-Induced Hydrodynamics and Sediment Suspension in a Heavy Shipping Traffic Waterway
,”
J. Mar. Sci. Eng.
,
8
(
6
), p.
424
.
32.
Göransson
,
G.
,
Larson
,
M.
, and
Althage
,
J.
,
2014
, “
Ship-Generated Waves and Induced Turbidity in the Göta Älv River in Sweden
,”
J. Waterw. Port Coastal Ocean Eng.
,
140
(
3
), p.
04014004
.
You do not currently have access to this content.