Abstract

Floating offshore wind turbines (FOWTs) are an opportunity for floating production storage and offloading units (FPSOs) to reduce emissions. To avoid long connecting power cables with long transmission distances between a FOWT and an FPSO, the novel concept of a suspended power cable in a large water depth of 1000 m is investigated in this study. The power cable is kept floating between the sea surface and the seabed without touching either of them. A catenary configuration and two configurations with subsea buoys attached at different locations along the cable are investigated. The OC3-Hywind 5 MW reference FOWT is set up with a deepwater mooring system, and a spread-moored FPSO is modeled with characteristics similar to existing FPSOs. Steady-state and dynamic simulations are carried out in the numerical software OrcaFlex. The different configurations are first evaluated in steady-state analyses. The largest tensions are observed for the catenary configuration, whereas it shows the lowest horizontal cable excursions. Buoys attached along the center section of the cable lift it into regions with strong currents. This results in a large horizontal excursion of the cable and large tensions. The suspended configuration with buoys attached evenly over the cable results in significantly lower tensions than the other two configurations. It is studied further with dynamic analyses. The tensions at the floater hang-offs increase by a maximum of 24% compared to steady-state results indicating that dynamic analysis is crucial for the design of suspended cable configurations.

References

1.
IEA
,
2021
,
World Energy Outlook 2021
,
International Energy Agency
,
France
.
2.
Tamez
,
A. S.
, and
Dellaert
,
S.
,
2020
,
Decarbonisation Options for the Dutch Offshore Natural Gas Industry
,
PBL Netherlands Environmental Assessment Agency
,
TNO, Netherlands
.
3.
Barton
,
C.
,
Hambling
,
H.
,
Albaugh
,
E. K.
, and
Davis
,
D.
,
2019
, “
2019 Worldwide Survey of Floating Production, Storage and Offloading (FPSO) Units
.”
4.
Eldøy
,
S.
,
Vold
,
O.
,
Graven
,
H.
,
Guttormsen
,
T.
, and
Delp
,
L.
,
2017
,
Hywind Scotland Pilot Park Project Plan for Construction Activities 2017
, C178-HYS-Z-GA-00001,
Statoil, Norway
.
5.
Duarte
,
T. M.
,
2021
, “
WindFloat Atlantic Project—A Step Change Towards Commercial Floating Wind
.”
6.
Equinor
,
2019
,
Hywind Tampen, PL050—PL057—PL089, PUD del II—Konsekvensutredning
,
Norway
.
7.
Thies
,
P. R.
,
Johanning
,
L.
, and
Smith
,
G. H.
,
2011
, “
Assessing Mechanical Loading Regimes and Fatigue Life of Marine Power Cables in Marine Energy Applications
,”
Proc. Inst. Mech. Eng, Part O
,
226
(
1
), pp.
18
32
.
8.
Thies
,
P. R.
,
Johanning
,
L.
, and
Dobral
,
C.
,
2017
, “
Parametric Sensitivity Study of Submarine Power Cable Design for Marine Renewable Energy Applications
,”
Proceedings of the ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering
,
Trondheim, Norway
,
June 25–30
.
9.
Zhao
,
S.
,
Cheng
,
Y.
,
Chen
,
P.
,
Nie
,
Y.
, and
Fan
,
K.
,
2021
, “
A Comparison of Two Dynamic Power Cable Configurations for a Floating Offshore Wind Turbine in Shallow Water
,”
AIP Adv.
,
11
(
3
), p.
35302
.
10.
Hall
,
M.
,
Sirnivas
,
S.
, and
Yu
,
Y.-H.
,
2021
, “
Implementation and Verification of Cable Bending Stiffness in MoorDyn
,”
ASME 2021 3rd International Offshore Wind Technical Conference
,
American Society of Mechanical Engineers
,
Virtual, Online
.
11.
Thies
,
P. R.
,
Harrold
,
M.
,
Johanning
,
L.
,
Grivas
,
K.
, and
Georgallis
,
G.
,
2019
, “
Load and Fatigue Evaluation for 66 KV Floating Offshore Wind Submarine Dynamic Power Cable
,”
Jicable’19 10th International Conference on Insulated Power Cables
,
Paris-Versailles, France
,
June 23–27
.
12.
Ottesen
,
T.
,
2010
, “
Extreme Response Estimation of Umbilical on Very Deep Water
,”
Master’s thesis
,
Norwegian University of Science and Technology
,
Trondheim, Norway
.
13.
Nair
,
A. A.
,
Anbu
,
G. A.
,
Rajamanickam
,
P. S.
,
Kuttikrishnan
,
G.
, and
Gidugu Ananda
,
R.
,
2016
, “
Analysis of Deep Sea Umbilical in Steep Wave Configuration
,”
Proceedings of the ASME 2016 International Mechanical Engineering Congress and Exposition
,
Phoenix, AZ
,
Nov. 11–17
.
14.
Rentschler
,
M. U. T.
,
Adam
,
F.
,
Chainho
,
P.
,
Krügel
,
K.
, and
Vicente
,
P. C.
,
2020
, “
Parametric Study of Dynamic Inter-Array Cable Systems for Floating Offshore Wind Turbines
,”
Mar. Syst. Ocean Technol.
,
15
(
1
), pp.
16
25
.
15.
Rentschler
,
M. U. T.
,
Adam
,
F.
, and
Chainho
,
P.
,
2019
, “
Design Optimization of Dynamic Inter-Array Cable Systems for Floating Offshore Wind Turbines
,”
Renewable Sustainable Energy Rev.
,
111
, pp.
622
635
.
16.
Ikhennicheu
,
M.
,
Lynch
,
M.
,
Doole
,
S.
,
Borisade
,
F.
,
Wendt
,
F.
,
Schwarzkopf
,
M.-A.
,
Matha
,
D.
, et al
,
2020
,
Review of the State of the Art of Dynamic Cable System Design
, D3.1, CoreWind, EU.
17.
Jin
,
R.
,
Hou
,
P.
,
Yang
,
G.
,
Qi
,
Y.
,
Chen
,
C.
, and
Chen
,
Z.
,
2019
, “
Cable Routing Optimization for Offshore Wind Power Plants Via Wind Scenarios Considering Power Loss Cost Model
,”
Appl. Energy
,
254
, p.
113719
.
18.
Klein
,
A.
, and
Haugland
,
D.
,
2021
, “
Optimization of Reliable Cyclic Cable Layouts in Offshore Wind Farms
,”
Eng. Optim.
,
53
(
2
), pp.
258
276
.
19.
Gustavsen
,
B.
, and
Mo
,
O.
,
2017
, “
Variable Transmission Voltage for Loss Minimization in Long Offshore Wind Farm AC Export Cables
,”
IEEE Trans. Power Delivery
,
32
(
3
), pp.
1422
1431
.
20.
Kang
,
Y.
,
Sun
,
L.
,
Kang
,
Z.
, and
Chai
,
S.
,
2014
, “
Coupled Analysis of FPSO and CALM Buoy Offloading System in West Africa
,”
Proceedings of the ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering
,
San Francisco, CA
,
June 8–13
.
21.
Amaechi
,
C. V.
,
Chesterton
,
C.
,
Butler
,
H. O.
,
Wang
,
F.
, and
Ye
,
J.
,
2021
, “
Review on the Design and Mechanics of Bonded Marine Hoses for Catenary Anchor Leg Mooring (CALM) Buoys
,”
Ocean Eng.
,
242
, p.
110062
.
22.
He
,
N.
,
Zhang
,
C.
, and
Kang
,
Z.
,
2018
, “
Analysis of Coupling Characteristics of the Offloading Buoy System in West Africa Seas
,”
Proceedings of the Twenty-Eighth (2018) International Ocean and Polar Engineering Conference
,
Sapporo, Japan
,
June 10–15
.
23.
Yang
,
S.-H.
,
Ringsberg
,
J. W.
, and
Johnson
,
E.
,
2018
, “
Parametric Study of the Dynamic Motions and Mechanical Characteristics of Power Cables for Wave Energy Converters
,”
J. Mar. Sci. Technol.
,
23
(
1
), pp.
10
29
.
24.
Rapha
,
J. I.
, and
Domínguez
,
J. L.
,
2021
, “
Suspended Cable Model for Layout Optimisation Purposes in Floating Offshore Wind Farms
,”
J. Phys.: Conf. Ser.
,
2018
(
1
), p.
012033
.
25.
Jonkman
,
J.
,
2010
,
Definition of the Floating System for Phase IV of OC3
, NREL/TP-500-47535,
National Renewable Energy Laboratory
,
Golden, CO
.
26.
Orcina Ltd
,
2022
, “
OrcaFlex
,” https://www.orcina.com/webhelp/OrcaFlex/, Accessed September 26, 2022.
27.
Python Software Foundation
,
2022
, “
Python
,” https://www.python.org/, Accessed March 11, 2022.
28.
Jonkman
,
J.
,
Butterfield
,
S.
,
Musial
,
W.
, and
Scott
,
G.
,
2009
,
Definition of a 5-MW Reference Wind Turbine for Offshore System Development
, NREL/TP-500-38060,
National Renewable Energy Laboratory
,
Golden, CO
.
29.
Jonkman
,
J.
, and
Musial
,
W.
,
2010
,
Offshore Code Comparison Collaboration (OC3) for IEA Task 23 Offshore Wind Technology and Deployment
, NREL/TP-5000-48191,
National Renewable Energy Laboratory
,
Golden, CO
.
30.
Schnepf
,
A.
,
Lopez-Pavon
,
C.
,
Ong
,
M. C.
,
Yin
,
G.
, and
Johnsen
,
Ø
,
2023
, “
Feasibility Study on Suspended Inter-array Power Cables Between Two Spar-type Offshore Wind Turbines
,”
Ocean Engineering
,
under review
.
31.
Oil Companies International Marine Forum
,
1994
,
Prediction of Wind and Current Loads on VLCCs
,
Witherby & Co.
,
London, UK
.
32.
PartnerPlast
,
A. S.
,
2021
, “
Offshore & Subsea—Buoyancy Systems and Cable Protection Solutions
.”
33.
ISO
,
2009
,
Petroleum and Natural Gas Industries—Design and Operation of Subsea Production Systems—Part 5: Subsea Umbilicals
, ISO 13628-5:2009.
34.
DNV
,
2016
,
Subsea Power Cables for Wind Power Plants
, DNVGL-ST-0359.
35.
Yang
,
Z.
,
Yan
,
J.
,
Sævik
,
S.
,
Lu
,
Q.
,
Ye
,
N.
,
Chen
,
J.
, and
Yue
,
Q.
,
2021
, “
Integrated Optimisation Design of a Dynamic Umbilical Based on an Approximate Model
,”
Mar. Struct.
,
78
, p.
102995
.
36.
DNV GL AS
,
2018
,
Position Mooring
, DNVGL-OS-E301.
37.
Roveri
,
F. E.
,
2007
, “
A Sensitivity Study on Fatigue Damage of a Drilling Riser Caused by Vortex-Induced Vibrations
,”
OTC, Offshore Technology Conference
,
Houston, TX
,
Apr. 30–May 3
.
You do not currently have access to this content.