Abstract

The study of wind turbine wakes is very important for the layout of offshore wind farms. The technique of regulating the yaw angles of the upstream wind turbine to lessen the influence on the downstream turbines has attracted continual attention in recent years. In this study, the wake interactions between a yaw wind turbine and a downstream wind turbine are investigated using a numerical technique based on the openfoam solver in conjunction with an improved actuator line method. The Gaussian anisotropic body force projection method and the integral velocity sampling method are the two fundamental components of the improvement of the actuator line method. The NREL 5-MW wind turbine benchmark model is used to test the numerical accuracy. The simulation of the wake effects from the upstream turbine in non-yawed conditions that follows has good agreement with the results that have been published in the literature. Finally, this work presents a number of predictions about the power coefficients and wake characteristics of two tandem-arranged wind turbines at various yaw angles based on these precise verification efforts. The results of the analysis in yaw conditions are used to derive the yaw wake characteristics and the optimal yaw angle range. As the yaw angle increases, the total power of the wind turbine increases and then decreases, and the upstream wake area decreases significantly. The total power reaches its maximum at 20–30 deg. The research content of this paper will provide an important reference for wind farm scheduling.

References

1.
Gaumond
,
M.
,
Réthoré
,
P-E
,
Ott
,
S.
,
Pena
,
A.
,
Bechmann
,
A.
, and
Hansen
,
K. S.
,
2014
, “
Evaluation of the Wind Direction Uncertainty and Its Impact on Wake Modeling at the Horns Rev Offshore Wind Farm
,”
Wind Energy
,
17
(
8
), pp.
1169
1178
.
2.
Churchfield
,
M.
,
Lee
,
S.
,
Moriarty
,
P.
,
Martinez
,
L.
,
Leonardi
,
S.
,
Vijayakumar
,
G.
, and
Brasseur
,
J.
,
2012
, “
A Large-Eddy Simulation of Wind-Plant Aerodynamics
,”
Proceedings of the 50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition
,
Nashville, TN
,
Jan. 9–12
,
p. 537
.
3.
Liu
,
L.
, and
Stevens
,
R. J.
,
2021
, “
Enhanced Wind-Farm Performance Using Windbreaks
,”
Phys. Rev. Fluids
,
6
(
7
), p.
074611
.
4.
Fleming
,
P. A.
,
Gebraad
,
P. M.
,
Lee
,
S.
,
van Wingerden
,
J.-W.
,
Johnson
,
K.
,
Churchfield
,
M.
,
Michalakes
,
J.
,
Spalart
,
P.
, and
Moriarty
,
P.
,
2014
, “
Evaluating Techniques for Redirecting Turbine Wakes Using SOWFA
,”
Renew. Energy
,
70
, pp.
211
218
.
5.
Miao
,
W.
,
Li
,
C.
,
Pavesi
,
G.
,
Yang
,
J.
, and
Xie
,
X.
,
2017
, “
Investigation of Wake Characteristics of a Yawed HAWT and Its Impacts on the Inline Downstream Wind Turbine Using Unsteady CFD
,”
J. Wind Eng. Ind. Aerodyn.
,
168
, pp.
60
71
.
6.
Sørensen
,
J. N.
,
Mikkelsen
,
R. F.
,
Henningson
,
D. S.
,
Ivanell
,
S.
,
Sarmast
,
S.
, and
Andersen
,
S. J.
,
2015
, “
Simulation of Wind Turbine Wakes Using the Actuator Line Technique
,”
Philos. Trans. R. Soc., A
,
373
(
2035
), p.
20140071
.
7.
Martínez-Tossas
,
L. A.
,
Churchfield
,
M. J.
, and
Leonardi
,
S.
,
2015
, “
Large Eddy Simulations of the Flow Past Wind Turbines: Actuator Line and Disk Modeling
,”
Wind Energy
,
18
(
6
), pp.
1047
1060
.
8.
Troldborg
,
N.
,
2009
, “
Actuator Line Modeling of Wind Turbine Wakes
.”
9.
Sibuet Watters
,
C.
, and
Masson
,
C.
,
2010
, “
Modeling of Lifting-Device Aerodynamics Using the Actuator Surface Concept
,”
Int. J. Numer. Methods fluids
,
62
(
11
), pp.
1264
1298
.
10.
Sorensen
,
J. N.
, and
Shen
,
W. Z.
,
2002
, “
Numerical Modeling of Wind Turbine Wakes
,”
ASME J. Fluids Eng.
,
124
(
2
), pp.
393
399
.
11.
Lu
,
H.
, and
Porté-Agel
,
F.
,
2011
, “
Large-eddy Simulation of a Very Large Wind Farm in a Stable Atmospheric Boundary Layer
,”
Phys. Fluids
,
23
(
6
), p.
065101
.
12.
Yu
,
Z.
,
Zheng
,
X.
, and
Ma
,
Q.
,
2018
, “
Study on Actuator Line Modeling of Two NREL 5-MW Wind Turbine Wakes
,”
Appl. Sci.
,
8
(
3
), p.
434
.
13.
Jonkman
,
J. M.
, and
Buhl
,
M. L.
,
2005
,
FAST User’s Guide
,
National Renewable Energy Laboratory
,
Golden, CO
, 365, 366.
14.
Han
,
Y.
,
Stoellinger
,
M.
, and
Naughton
,
J.
,
2016
, “
Large Eddy Simulation for Atmospheric Boundary Layer Flow Over Flat and Complex Terrains
,”
J. Phys.: Conf. Ser.
,
753
(
3
), p.
032044
.
15.
Churchfield
,
M. J.
,
Vijayakumar
,
G.
,
Brasseur
,
J. G.
, and
Moriarty
,
P. J.
,
2010
,
Wind Energy-Related Atmospheric Boundary Layer Large-Eddy Simulation Using OpenFOAM. No. NREL/CP-500-48905
,
National Renewable Energy Lab.(NREL)
,
Golden, CO (United States)
.
16.
Onel
,
H. C.
, and
Tuncer
,
I. H.
,
2020
, “
A Comparative Study of Wake Interactions Between Wind-Aligned and Yawed Wind Turbines Using LES and Actuator Line Models
,”
J. Phys.: Conf. Ser.
,
1618
(
6
), p.
062009
.
17.
Wang
,
Y.
,
Miao
,
W.
,
Ding
,
Q.
,
Li
,
C.
, and
Xiang
,
B.
,
2019
, “
Numerical Investigations on Control Strategies of Wake Deviation for Large Wind Turbines in an Offshore Wind Farm
,”
Ocean Eng.
,
173
, pp.
794
801
.
18.
Xue
,
F.
,
Duan
,
H.
,
Xu
,
C.
,
Han
,
X.
,
Shangguan
,
Y.
,
Li
,
T.
, and
Fen
,
Z.
,
2022
, “
Research on the Power Capture and Wake Characteristics of a Wind Turbine Based on a Modified Actuator Line Model
,”
Energies
,
15
(
1
), p.
282
.
19.
Gao
,
Z.
,
Li
,
Y.
,
Wang
,
T.
,
Ke
,
S.
, and
Li
,
D.
,
2021
, “
Recent Improvements of Actuator Line-Large-Eddy Simulation Method for Wind Turbine Wakes
,”
Appl. Math. Mech.
,
42
(
4
), pp.
511
526
.
20.
Jha
,
P. K.
,
Churchfield
,
M. J.
,
Moriarty
,
P. J.
, and
Schmitz
,
S.
,
2014
, “
Guidelines for Volume Force Distributions Within Actuator Line Modeling of Wind Turbines on Large-Eddy Simulation-Type Grids
,”
ASME J. Sol. Energy Eng.
,
136
(
3
), p.
031003
.
21.
Martínez-Tossas
,
L. A.
,
Churchfield
,
M. J.
, and
Meneveau
,
C.
,
2016
, “
A Highly Resolved Large-Eddy Simulation of a Wind Turbine Using an Actuator Line Model With Optimal Body Force Projection
,”
J. Phys.: Conf. Ser.
,
753
(
8
), p.
082014
.
22.
Churchfield
,
M. J.
,
Schreck
,
S. J.
,
Martinez
,
L. A.
,
Meneveau
,
C.
, and
Spalart
,
P. R.
,
2017
, “
An Advanced Actuator Line Method for Wind Energy Applications and Beyond
,”
Proceedings of the 35th Wind Energy Symposium
,
Grapevine, TX
,
Jan. 9–13
, p.
1998
.
23.
Jha
,
P. K.
, and
Schmitz
,
S.
,
2018
, “
Actuator Curve Embedding–An Advanced Actuator Line Model
,”
J. Fluid Mech.
,
834
, pp.
R2(1)
R2(11)
.
24.
Smagorinsky
,
J.
,
1963
, “
General Circulation Experiments With the Primitive Equations: I. The Basic Experiment
,”
Mon. Weather Rev.
,
91
(
3
), pp.
99
164
.
25.
Drela
,
M.
,
1989
, “XFOIL: An Analysis and Design System for Low Reynolds Number Airfoils,”
Low Reynolds Number Aerodynamics
,
Springer
,
Berlin/Heidelberg
, pp.
1
12
.
26.
Martínez-Tossas
,
L. A.
,
Churchfield
,
M. J.
, and
Meneveau
,
C.
,
2017
, “
Optimal Smoothing Length Scale for Actuator Line Models of Wind Turbine Blades Based on Gaussian Body Force Distribution
,”
Wind Energy
,
20
(
6
), pp.
1083
1096
.
27.
Shen
,
W. Z.
,
Mikkelsen
,
R.
,
Sørensen
,
J. N.
, and
Bak
,
C.
,
2005
, “
Tip Loss Corrections for Wind Turbine Computations
,”
Wind Energy. Int. J. Prog. Appl. Wind Power Conv. Technol.
,
8
(
4
), pp.
457
475
.
28.
Weller
,
H. G.
,
Tabor
,
G.
,
Jasak
,
H.
, and
Fureby
,
C.
,
1998
, “
A Tensorial Approach to Computational Continuum Mechanics Using Object-Oriented Techniques
,”
Comput. Phys.
,
12
(
6
), pp.
620
631
.
29.
Bachant
,
P.
,
Goude
,
A.
, and
Wosnik
,
M.
,
2019
, “
Actuator Line Modeling of Vertical-Axis Turbines
,”
arXiv preprint
. https://arxiv.org/abs/1605.01449
30.
Jonkman
,
J.
,
Butterfield
,
S.
,
Musial
,
W.
, and
Scott
,
G.
,
2009
,
Definition of a 5-MW Reference Wind Turbine for Offshore System Development. No. NREL/TP-500-38060
,
National Renewable Energy Lab.(NREL)
,
Golden, CO
.
31.
Onel
,
H. C.
, and
Tuncer
,
I. H.
,
2021
, “
Investigation of Wind Turbine Wakes and Wake Recovery in a Tandem Configuration Using Actuator Line Model With LES
,”
Comput. Fluids
,
220
, p.
104872
.
32.
Hargreaves
,
D. M.
, and
Wright
,
N. G.
,
2007
, “
On the Use of the k–ε Model in Commercial CFD Software to Model the Neutral Atmospheric Boundary Layer
,”
J. Wind Eng. Ind. Aerodyn.
,
95
(
5
), pp.
355
369
.
33.
Marten
,
D.
,
Wendler
,
J.
,
Pechlivanoglou
,
G.
,
Nayeri
,
C. N.
, and
Paschereit
,
C. O.
,
2013
, “
QBLADE: an Open Source Tool for Design and Simulation of Horizontal and Vertical Axis Wind Turbines
,”
Int. J. Emerging Technol. Adv. Eng
,
3
(
3
), pp.
264
269
.
34.
Dose
,
B.
,
Rahimi
,
H.
,
Herráez
,
I.
,
Stoevesandt
,
B.
, and
Peinke
,
J.
,
2018
, “
Fluid-Structure Coupled Computations of the NREL 5 MW Wind Turbine by Means of CFD
,”
Renew. Energy
,
129
, pp.
591
605
.
35.
Jonkman
,
J. M.
, and
Buhl
,
M. L.
,
2005
,
FAST User's Guide. Vol. 365
,
National Renewable Energy Laboratory
,
Golden, CO
.
You do not currently have access to this content.