Abstract

In order to comprehensively utilize ocean resources and renewable energy, a novel modular floating structure (MFS) system with multi-direction expansibility has been proposed, which includes inner hexagonal tension leg platform (TLP) modules and outermost floating artificial reef modules coupled with the function of the wave energy converter (WEC). Considering both the hydrodynamic interaction effect and the mechanical coupling effect, the main dynamic responses of the MFS system have been analyzed under different incident wave directions, and the corresponding physical mechanism has been clarified. Results indicate that connector loads slightly increase, but motion responses of the MFS system are more stable when the outermost floating artificial reefs serve as the up-wave modules. Outermost floating artificial reef modules have shown good wave-attenuation capacity for inner TLP modules, as well as producing considerable output wave power. The effect of key power take-off (PTO) parameters on the WECs’ performance has been investigated, and the optimal PTO damping coefficient has been suggested. In addition, extreme responses of the proposed MFS system have been further studied, and its safety has been well verified under typical extreme sea conditions. The main results of this work can serve as a helpful reference for the construction of future offshore floating cities.

References

1.
Jiang
,
D.
,
Tan
,
K. H.
,
Dai
,
J.
,
Ang
,
K. K.
, and
Nguyen
,
H. P.
,
2021
, “
Behavior of Concrete Modular Multi-purpose Floating Structures
,”
Ocean Eng.
,
229
, p.
108971
.
2.
Drummen
,
I.
, and
Olbert
,
G.
,
2021
, “
Conceptual Design of a Modular Floating Multi-purpose Island
,”
Front. Mar. Sci.
,
8
.
3.
Li
,
L.
,
Carlo
,
R.
,
Maurizio
,
C.
,
Gao
,
Y.
,
Giuseppe
,
F.
, and
Felice
,
A.
,
2020
, “
Analysis of the Coupled Dynamic Response of an Offshore Floating Multi-purpose Platform for the Blue Economy
,”
Ocean Eng.
,
217
, p.
107943
.
4.
Wang
,
C. M.
,
Watanabe
,
E.
, and
Utsunomiya
,
T.
,
2014
,
Very Large Floating Structures
,
Taylor and Francis
,
Abingdon, UK
.
5.
Dai
,
J.
,
Zhang
,
C.
,
Lim
,
H. V.
,
Ang
,
K. K.
,
Qian
,
X.
,
Heng
,
W. J. L.
,
Tan
,
S. T.
, and
Wang
,
C. L.
,
2020
, “
Design and Construction of Floating Modular Photovoltaic System for Water Reservoirs
,”
Energy
,
191
, p.
116549
.
6.
Wang
,
C. M.
,
Tay
,
Z. Y.
,
Takagi
,
K.
, and
Utsunomiya
,
T.
,
2010
, “
Literature Review of Methods for Mitigating Hydroelastic Response of VLFS Under Wave Action
,”
Appl. Mech. Rev.
,
63
(
3
), p. 030802.
7.
Lamas-Pardo
,
M.
,
Iglesias
,
G.
, and
Carral
,
L.
,
2015
, “
A Review of Very Large Floating Structures (VLFS) for Coastal and Offshore Uses
,”
Ocean Eng.
,
109
, pp.
677
690
.
8.
Riggs
,
H. R.
, and
Ertekin
,
R. C.
,
1993
, “
Approximate Methods for Dynamic Response of Multi-module Floating Structures
,”
Mar. Struct.
,
6
(
2–3
), pp.
117
141
.
9.
Loukogeorgaki
,
E.
,
Lentsiou
,
E.
,
Aksel
,
M.
, and
Yagci
,
O.
,
2017
, “
Experimental Investigation of the Hydroelastic and the Structural Response of a Moored Pontoon-Type Modular Floating Breakwater With Flexible Connectors
,”
Coast. Eng.
,
121
, pp.
240
254
.
10.
Ren
,
N.
,
Zhang
,
C.
,
Magee
,
A. R.
,
Hellan
,
Ø
,
Dai
,
J.
, and
Ang
,
K. K.
,
2019
, “
Hydrodynamic Analysis of a Modular Multi-purpose Floating Structure System With Different Outermost Connector Types
,”
Ocean Eng.
,
176
, pp.
158
168
.
11.
Wang
,
G.
,
Drimer
,
N.
, and
Goldfeld
,
Y.
,
2020
, “
Modular Floating Structures (MFS) for Offshore Dwelling a Hydrodynamic Analysis in the Frequency Domain
,”
Ocean Eng.
,
216
, p.
107996
.
12.
Li
,
L.
,
Gao
,
Y.
,
Yuan
,
Z.
,
Day
,
S.
, and
Hu
,
Z.
,
2018
, “
Dynamic Response and Power Production of a Floating Integrated Wind, Wave and Tidal Energy System
,”
Renew. Energ.
,
116
, pp.
412
422
.
13.
Cheng
,
Y.
,
Xi
,
C.
,
Dai
,
S.
,
Ji
,
C.
,
Cocard
,
M.
,
Yuan
,
Z.
, and
Incecik
,
A.
,
2021
, “
Performance Characteristics and Parametric Analysis of a Novel Multi-Purpose Platform Combining a Moonpool-Type Floating Breakwater and an Array of Wave Energy Converters
,”
Appl. Energ.
,
292
, p.
116888
.
14.
Cheng
,
Y.
,
Xi
,
C.
,
Dai
,
S.
,
Ji
,
C.
,
Collu
,
M.
,
Li
,
M.
,
Yuan
,
Z.
, and
Incecik
,
A.
,
2022
, “
Wave Energy Extraction and Hydroelastic Response Reduction of Modular Floating Breakwaters as Array Wave Energy Converters Integrated Into a Very Large Floating Structure
,”
Appl. Energ.
,
306
, p.
117953
.
15.
Nguyen
,
H. P.
,
Wang
,
C. M.
,
Tay
,
Z. Y.
, and
Luong
,
V. H.
,
2020
, “
Wave Energy Converter and Large Floating Platform Integration: A Review
,”
Ocean Eng.
,
213
, p.
107768
.
16.
Zhang X.
,
Z.
,
Lu D
,
S.
, and
Tian
,
X.
,
2019
, “
Numerical Investigation of the Dynamic Response and Power Capture Performance of a VLFS With a Wave Energy Conversion Unit
,”
Eng. Struct.
,
195
, pp.
62
83
.
17.
Nguyen
,
H. P.
,
Wang
,
C. M.
, and
Luong
,
V. H.
,
2020
, “
Two-mode WEC-Type Attachment for Wave Energy Extraction and Reduction of Hydroelastic Response of Pontoon-Type VLFS
,”
Ocean Eng.
,
197
, p.
106875
18.
Ren
,
N.
,
Wu
,
H.
,
Ma
,
Z.
, and
Ou
,
J.
,
2020
, “
Hydrodynamic Analysis of a Novel Modular Floating Structure System With Central Tension-Leg Platforms
,”
Ships Offshore Struc.
,
15
(
9
), pp.
1011
1022
.
19.
Tseranidis
,
S.
,
Theodoridis
,
L.
,
Loukogeorgaki
,
E.
, and
Angelides
,
D. C.
,
2016
, “
Investigation of the Condition and the Behavior of a Modular Floating Structure by Harnessing Monitoring Data
,”
Mar. Struct.
,
50
, pp.
224
242
.
20.
Jiang
,
C.
,
Ould
,
M.
, and
Thomas
,
S.
,
2021
, “
Hydrodynamic Sensitivity of Moored and Articulated Multibody Offshore Structures in Waves
,”
J. Mar. Sci. Eng.
,
9
(
9), p.
1028
.
21.
Michailides
,
C.
,
Loukogeorgaki
,
E.
, and
Angelides
,
D. C.
,
2013
, “
Response Analysis and Optimum Configuration of a Modular Floating Structure With Flexible Connectors
,”
Appl. Ocean Res.
,
43
, pp.
112
130
.
22.
Ren
,
N.
,
Wu
,
H.
,
Liu
,
K.
,
Zhou
,
D.
, and
Ou
,
J.
,
2021
, “
Hydrodynamic Analysis of a Modular Floating Structure With Tension-Leg Platforms and Wave Energy Converters
,”
J. Mar. Sci. Eng.
,
9
(
4
), p.
424
.
23.
Bachynski
,
E. E.
, and
Moan
,
T.
,
2013
, “
Point Absorber Design for a Combined Wind and Wave Energy Converter on a Tension-Leg Support Structure
,”
Proceedings of the ASME 2013 32nd International Conference on Ocean, Offshore and Arctic Engineering
,
Nantes, France
,
June 9–14
, Paper No. OMAE2013-10429.
24.
Tabeshpour
,
M. R.
,
Ahmadi
,
A.
, and
Malayjerdi
,
E.
,
2018
, “
Investigation of TLP Behavior Under Tendon Damage
,”
Ocean Eng.
,
156
, pp.
580
595
.
25.
Souravlias
,
D.
,
Dafnomilis
,
I.
,
Ley
,
J.
,
Assbrock
,
G.
,
Duinkerken
,
M.
,
Negenborn
,
R.
, and
Schott
,
D.
,
2020
, “
Design Framework for a Modular Floating Container Terminal
,”
Front. Mar. Sci.
,
7
.
26.
Wang
,
G.
,
Goldfeld
,
Y.
, and
Drimer
,
N.
,
2019
, “
Expanding Coastal Cities—Proof of Feasibility for Modular Floating Structures (MFS)
,”
J. Clean Prod.
,
222
, pp.
520
538
.
27.
Xu
,
D.
,
Zhang
,
H.
,
Xia
,
S.
,
Lu
,
C.
,
Qi
,
E.
,
Tian
,
C.
, and
Wu
,
Y.
,
2018
, “
Nonlinear Dynamic Characteristics of a Multi-Module Floating Airport With Rigid-Flexible Connections
,”
J. Hydrodyn.
,
30
(
5
), pp.
815
827
.
28.
Lima
,
J. S.
,
Zalmon
,
I. R.
, and
Love
,
M.
,
2019
, “
Overview and Trends of Ecological and Socioeconomic Research on Artificial Reefs
,”
Mar. Environ. Res.
,
145
, pp.
81
96
.
29.
Zhang
,
J.
,
He
,
Y.
,
Guo
,
Z.
,
Ji
,
S.
,
Zhang
,
S.
,
Tang
,
Y.
,
Sheng
,
H.
,
Wan
,
R.
, and
Daisuke
,
K.
,
2021
, “
Improvement on the Effectiveness of Marine Stock Enhancement in the Artificial Reef Area by a New Cage-Based Release Technique
,”
J. Ocean U. China
,
20
(
4
), pp.
992
998
.
30.
Giulio
,
B.
, and
Maroua
,
S.
,
2021
, “
A New Criterion for Multi-purpose Platforms Siting: Fish Endurance to Wave Motion Within Offshore Farming Cages
,”
Ocean Eng.
,
224
, p.
108751
.
31.
Wang
,
G.
,
Wan
,
R.
,
Wang
,
X.
,
Zhao
,
F.
,
Lan
,
X.
,
Cheng
,
H.
,
Tang
,
W.
, and
Guan
,
Q.
,
2018
, “
Study on the Influence of Cut-Opening Ratio, Cut-Opening Shape, and Cut-Opening Number on the Flow Field of a Cubic Artificial Reef
,”
Ocean Eng.
,
162
, pp.
341
352
.
32.
ANSYS, Inc
,
2013
,
Aqwa User’s Manual
,
ANSYS, Inc.
,
Canonsburg, PA
.
33.
Ren
,
N.
,
Ma
,
Z.
,
Shan
,
B.
,
Ning
,
D.
, and
Ou
,
J.
,
2020
, “
Experimental and Numerical Study of Dynamic Responses of a New Combined TLP Type Floating Wind Turbine and a Wave Energy Converter Under Operational Conditions
,”
Renew. Energ.
,
151
, pp.
966
974
.
You do not currently have access to this content.