Abstract

A subsea shuttle tanker (SST) concept for liquid carbon dioxide transportation was recently proposed to support studies evaluating the ultra-efficient underwater cargo submarine concept. One important topic is the position keeping ability of SST during the offloading process. In this process, the SST hovers above the well and connects with the wellhead using a flowline. This process takes around 4 h. Ocean currents can cause tremendous drag forces on the subsea shuttle tanker during this period. The flow velocities over hydroplanes are low throughout this process, and the generated lift forces are generally insufficient to maintain the SST’s depth. The ballast tanks cannot provide such fast actuation to cope with the fluctuation of the current. It is envisioned that tunnel thrusters that can provide higher frequency actuation are required. This paper develops a maneuvering model and designs a linear quadratic regulator that facilitates the SST station-keeping problem in stochastic current. As case studies, the SST footprints at 0.5 m/s, 1.0 m/s, and 1.5 m/s mean current speeds are presented. Numerical results show that the designed hovering control system can ensure the SST’s stationary during offloading. The required thrust from thrusters and the propeller are presented. The presented model can serve as a basis for obtaining a more efficient design of the SST and provide recommendations for the SST operation.

References

1.
Norsk Petroleum
,
2021
, “
The Oil and Gas Pipeline System
,” https://www.norskpetroleum.no/en/production-and-exports/the-oil-and-gas-pipeline-system/
2.
Kenny
,
S.
,
2018
, “Offshore Pipelines—Elements of Managing Risk,”
Methods in Chemical Process Safety
,
F.
Khan
, and
R.
Abbassi
, eds,
Elsevier
,
New York
, pp.
289
325
.
3.
Xing
,
Y.
,
2021
, “
A Conceptual Large Autonomous Subsea Freight-Glider for Liquid CO2 Transportation
,”
Proceedings of the ASME 2021 40th International Conference on Ocean, Offshore and Arctic Engineering
, virtual, online,
June 21–30
, V006T06A052, pp.
1
8
.
4.
Ma
,
Y.
,
Xing
,
Y.
,
Ong
,
M. C.
, and
Hemmingsen
,
T. H.
,
2021
, “
Baseline Design of a Subsea Shuttle Tanker System for Liquid Carbon Dioxide Transportation
,”
Ocean Eng.
,
240
, pp.
1
24
.
5.
Jacobsen
,
L. R.
,
1971
, “
Subsea Transport of Arctic Oil—A Technical and Economic Evaluation
,”
Proceedings of the Offshore Technology Conference
,
Dallas, TX
,
Apr. 18–20
, pp.
95
112
.
6.
Moloney
,
M. P.
,
1974
, “
Submarine Tanker Concepts and Problems
,”
Natl. Maritime Res. Center.
, Report No. COM-75-10009.
7.
Taylor
,
P. K.
, and
Montgomery
,
J. B.
,
1977
, “
Arctic Submarine Tanker System
,”
Proceedings of the Offshore Technology Conference
,
Houston, TX
,
May 1–4
, pp.
265
274
.
8.
Jacobsen
,
L.
,
Lawrence
,
K.
,
Hall
,
K.
,
Canning
,
P.
, and
Gardner
,
E.
,
1983
, “
Transportation of LNG From the Arctic by Commercial Submarine
,”
Marine Technol. SNAME News
,
20
(
4
), pp.
377
384
.
9.
Jacobsen
,
L. R.
, and
Murphy
,
J. J.
,
1983
, “
Submarine Transportation of Hydrocarbons From the Arctic
,”
Cold Regions Sci. Technol.
,
7
, pp.
273
283
.
10.
Equinor Energy AS
,
2019
, “
RD 662093-Subsea Shuttle System
,”
Res. Disclosure.
, Report No. RD662093.
11.
Ellingsen
,
K. E.
,
Ravndal
,
O.
,
Reinås
,
L.
,
Hansen
,
J. H.
,
Marra
,
F.
,
Myhre
,
E.
,
Dupuy
,
P. M.
, and
Sveberg
,
K.
,
2020
, “
RD 677082-Subsea Shuttle System
,”
Res. Disclosure.
, Report No. RD 677082.
12.
Xing
,
Y.
,
Ong
,
M. C.
,
Hemmingsen
,
T.
,
Ellingsen
,
K. E.
, and
Reinås
,
L.
,
2021
, “
Design Considerations of a Subsea Shuttle Tanker System for Liquid Carbon Dioxide Transportation
,”
ASME J. Offshore Mech. Arct. Eng.
,
143
(
4
), p.
045001
.
13.
Xing
,
Y.
,
Santoso
,
T. A. D.
, and
Ma
,
Y.
,
2021
, “
Technical–Economic Feasibility Analysis of Subsea Shuttle Tanker
,”
J. Marine Sci. Eng.
,
10
(
1
), p.
20
.
14.
Anderson
,
B. D. O.
, and
Moore
,
J. B.
,
2007
,
Optimal Control: Linear Quadratic Methods
,
Dover Publications, Inc.
,
Mineola, NY
.
15.
Fossen
,
T. I.
,
2011
,
Handbook of Marine Craft Hydrodynamics and Motion Control
,
John Willey & Sons, Ltd.
,
West Sussex
.
16.
Mendes
,
C. H.
,
Bentes
,
C.
,
Rebelo
,
T. A.
, and
Bousson
,
K.
,
2017
, “
Guidance and Robust Control of a Double-Hull Autonomous Underwater Vehicle
,”
Proceedings of the ICEUBI2017—International Congress on Engineering
,
Covilha, Portugal
,
Dec. 5–7
,
Universidade da Beira Interior
, pp.
1194
1203
.
17.
Tiwari
,
B. K.
, and
Sharma
,
R.
,
2020
, “
Design and Analysis of a Variable Buoyancy System for Efficient Hovering Control of Underwater Vehicles With State Feedback Controller
,”
J. Marine Sci. Eng.
,
8
(
4
), p.
263
.
18.
Bowers
,
A. H.
,
Murillo
,
O. J.
,
Jensen
,
R.
,
Eslinger
,
B.
, and
Gelzer
,
C.
,
2016
,
On Wings of the Minimum Induced Drag: Spanload Implications for Aircraft and Birds
,
NASA
,
Edwards, CA
.
20.
Sørensen
,
A. J.
,
2018
,
Marine Cybernetics (Lecture Notes)
,
Department of Marine Technology, NTNU
,
Trondheim
.
21.
Bruserud
,
K.
, and
Haver
,
S.
,
2018
, “
Current Conditions in the Northern North Sea
,”
Ocean Eng.
,
156
, pp.
318
332
.
22.
Ersdal
,
G.
,
2001
, “
An Overview of Ocean Currents With Emphasis on Currents on the Norwegian Continental Shelf
,” Norwegian Petroleum Directorate.
23.
Chen
,
C.-T.
,
1999
,
Linear System Theory and Control
,
Oxford University Press
,
New York
.
24.
Davis
,
J. H.
,
2002
,
Foundations of Deterministic and Stochastic Control
,
Springer
,
Boston, MA
.
25.
Mariano
,
A. J.
,
Ryan
,
E. H.
,
Perkins
,
B. D.
, and
Smithers
,
S.
,
1995
,
The Mariano Global Surface Velocity Analysis 1.0
,
United States Coast Guard Research and Development Centre
,
Washington, DC
.
26.
Sætre
,
R.
,
2007
,
The Norwegian Costal Current: Oceaography and Climate
,
Fagbokforlaget
,
Bergen, Norway
.
You do not currently have access to this content.