Abstract

Estimation of the hydrodynamic loads based on strip theory using the Morrison equation provides an inexpensive method for load estimation for the offshore industry. The advantage of this approach is that it requires only the undisturbed wave kinematics along with inertia and viscous force coefficients. Over the recent years, the development in numerical wave tank simulations makes it possible to simulate nonlinear 3-h sea states, with computational times in the order of real time. This presents the possibility to calculate loads using wave spectrum input in numerical simulations with reasonable computational time and effort. In the current paper, the open-source fully nonlinear potential flow model REEF3D::FNPF is employed for calculating the nonlinear wave kinematics. Here, the Laplace equation for the velocity potential is solved on a σ-coordinate mesh with the nonlinear free surface boundary conditions to close the system. A technique to calculate the total acceleration on the σ-coordinate grid is introduced which makes it possible to apply strip theory in a moving grid framework. With the combination of strip theory and 3-h wave simulations, a unique possibility to estimate the hydrodynamic loads in real time for all discrete positions in space within the domain of the numerical wave tank is presented in this paper. The numerical results for inline forces on an offshore wind mono-pile substructure are compared with measurements, and the new approach shows good agreement.

References

1.
Frandsen
,
S.
,
Tarp-Johansen
,
N. J.
,
Hansen
,
E. A.
,
Høgedal
,
M.
,
Ibsen
,
L. B.
, and
Jensen
,
L.
,
2006
, “
Offshore Wind Turbine Design: Addressing Uncertainty Drivers
,”
2006 European Wind Energy Conference and Exhibition, European Wind Energy Association (EWEA)
,
Athens, Greece
,
Feb. 27–Mar. 2
.
2.
Pakozdi
,
C.
,
Ostman
,
A.
,
Ji
,
G.
,
Stansberg
,
C. T.
,
Reum
,
O.
,
Ovrebo
,
S.
,
Vestbostad
,
T.
,
Sorvaag
,
C.
, and
Ersland
,
J.
,
2016
, “
Estimation of Wave Loads Due to Green Water Events in 10000-Year Conditions on a TLP Deck Structure
,”
Proceedings of the ASME 2016 35th International Conference on Ocean, Offshore and Arctic Engineering
,
ASME
, ASME Paper No. OMAE2020-18298.
3.
Pakozdi
,
C.
,
Östman
,
A.
,
Abrahamsen
,
B.
,
Økland
,
O.
,
Vestbøstad
,
T. M.
,
Lian
,
G.
, and
Stansberg
,
C.
,
2017
, “
New Combined CFD and Model Testing Technique for Identification of Wave Impact Loads on a Semisubmersible
,”
Proceedings of the ASME 2016 35th International Conference on Ocean, Offshore and Arctic Engineering
,
ASME
, ASME Paper No. OMAE2017-62643.
4.
Kamath
,
A.
,
Chella
,
M. A.
,
Bihs
,
H.
, and
Arntsen
,
Ø. A.
,
2016
, “
Breaking Wave Interaction With a Vertical Cylinder and the Effect of Breaker Location
,”
Ocean Eng.
,
128
, pp.
105
115
.
5.
Chella
,
M. A.
,
Bihs
,
H.
, and
Myrhaug
,
D.
,
2019
, “
Wave Impact Pressure and Kinematics Due to Breaking Wave Impingement on a Monopile
,”
J. Fluids Struct.
,
86
, pp.
94
123
.
6.
Pakozdi
,
C.
,
Östman
,
A.
,
Stansberg
,
C.
,
Peric
,
M.
,
Lu
,
H.
, and
Baarholm
,
R.
,
2015
, “
Estimation of Wave in Deck Load Using CFD Validated Against Model Test Data
,”
The Twenty-Fifth International Ocean and Polar Engineering Conference
,
ISOPE
, ASME Paper No. ISOPE-I-15-586.
7.
Baquet
,
A.
,
Kim
,
J.
, and
Huang
,
Z.
,
2017
, “
Numerical Modeling Using CFD and Potential Wave Theory for Three-Hour Nonlinear Irregular Wave Simulations
,”
ASME 2017 36th OMAE
, ASME Paper No. OMAE2017-61090.
8.
Huang
,
Z.
, and
Guo
,
Q.
,
2017
, “
Semi-Empirical Crest Distributions of Long-Crest Nonlinear Waves of Three-Hour Duration
,”
Proceedings of the ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering
,
ASME
, ASME Paper No. OMAE2017-61226.
9.
Sharma
,
J. N.
, and
Dean
,
R. G.
,
1981
, “
Second-Order Directional Seas and Associated Wave Forces
,”
Soc. Petrol. Eng. J.
,
21
(
01
), pp.
129
140
.
10.
Marthinsen
,
T.
, and
Winterstein
,
S.
,
1992
, “
On the Skewness of Random Surface Waves
,”
Proceedings of the Second International Offshore and Polar Engineering Conference (ISOPE), III
,
San Francisco, CA
,
June 14–19
, pp.
472
478
.
11.
Wedel-Heinen
,
J.
,
Ronold
,
K. O.
, and
Madsen
,
P. H.
,
2007
, “
Revision of DNV Design Standard for Offshore Wind Turbine Structures
,”
International Conference on Offshore Mechanics and Arctic Engineering
,
San Diego, CA
,
June 10–15
, Vol. 42711, pp.
433
439
.
12.
Bachynski
,
E. E.
,
Kristiansen
,
T.
, and
Thys
,
M.
,
2017
, “
Experimental and Numerical Investigations of Monopile Ringing in Irregular Finite-Depth Water Waves
,”
Appl. Ocean Res.
,
68
, pp.
154
170
.
13.
Faltinsen
,
O. M.
,
1990
,
Sea Loads on Ships and Offshore Structures
,
Cambridge University Press
,
Cambridge
.
14.
Bihs
,
H.
,
Wang
,
W.
,
Pakozdi
,
C.
, and
Kamath
,
A.
,
2020
, “
REEF3D::FNPF—A Flexible Fully Nonlinear Potential Flow Solver
,”
ASME J. Offshore Mech. Arct. Eng.
,
142
(
4
), p.
041902
.
15.
Pakozdi
,
C.
,
Fouques
,
S.
,
Thys
,
M.
,
Kamth
,
A.
,
Wang
,
W.
,
Dadmarzi
,
F. H.
,
Bachynski
,
E.
, and
Bihs
,
H.
,
2020
, “
Validation of Numerical Wave Tank Simulations Using Reef3d With Jonswap Spectra in Intermediate Water Depth
,”
Proceedings of the ASME 2020 39th International Conference on Ocean, Offshore and Arctic Engineering
, ASME Paper No. OMAE2020-18298.
16.
Wang
,
W.
,
Kamath
,
A.
,
Martin
,
T.
,
Pakozdi
,
C.
, and
Bihs
,
H.
,
2020
, “
A Comparison of Different Wave Modelling Techniques in an Open-Source Hydrodynamic Framework
,”
J. Mar. Sci. Eng.
,
8
(
7
), p.
526
.
17.
Wang
,
W.
,
Pákozdi
,
C.
,
Kamath
,
A.
, and
Bihs
,
H.
,
2021
, “
A Fully Nonlinear Potential Flow Wave Modelling Procedure for Simulations of Offshore Sea States With Various Wave Breaking Scenarios
,”
Appl. Ocean Res.
,
117
, p.
102898
.
18.
Engsig-Karup
,
A. P.
,
Hesthaven
,
J. S.
,
Bingham
,
H. B.
, and
Warburton
,
T.
,
2008
, “
DG-FEM Solution for Nonlinear Wave-Structure Interaction Using Boussinesq-Type Equations
,”
Coast. Eng.
,
55
(
3
), pp.
197
208
.
19.
Jacobsen
,
N.
,
Fuhrman
,
D.
, and
Fredsøe
,
J.
,
2012
, “
A Wave Generation Toolbox for the Open-Source CFD Library: Openfoam
,”
Int. J. Numer. Methods Fluids
,
70
(
9
), pp.
1073
1088
.
20.
Clamond
,
D.
, and
Dutykh
,
D.
,
2018
, “
Accurate Fast Computation of Steady Two-Dimensional Surface Gravity Waves in Arbitrary Depth
,”
J. Fluid Mech.
,
844
, pp.
491
518
.
21.
Donea
,
J.
,
Huerta
,
A.
,
Ponthot
,
J.-P.
, and
Rodriguez-Ferran
,
A.
,
2004
,
Encyclopedia of Computational Mechanics. Part 1. Fundamentals
, Online ed.,
John Wiley & Sons, Ltd.
,
Chichester West Sussex, UK
. DOI: 10.1002/0470091355.
22.
Morison
,
J. R.
,
Johnson
,
J. W.
, and
Schaaf
,
S. A.
,
1950
, “
The Force Exerted by Surface Waves on Piles
,”
J. Petrol. Technol.
,
2
, pp.
149
154
.
23.
Nestegåard
,
A.
,
Kalleklev
,
A. J.
,
Hagatun
,
K.
,
Lin Wu
,
Y.
,
Haver
,
S.
, and
Lehn
,
E.
,
2004
, “
Resonant Vibrations of Riser Guide Tubes Due to Wave Impact
,”
The Twenty-Third International Ocean and Polar Engineering Conference
,
ASME
, ASME Paper No. OMAE2004-51545.
24.
Campbell
,
I.
, and
Weynberg
,
P.
,
1980
, “
Measurement of Parameters Affecting Slamming
,” Report No. 440, Southampton University: Wolfson Unit for Marine Technology, Technology Reports Centre No. OT-R-8042.
25.
Mo
,
W.
,
Irschik
,
K.
,
Oumeraci
,
H.
, and
Liu
,
P. L. F.
,
2007
, “
A 3D Numerical Model for Computing Non-breaking Wave Forces on Slender Piles
,”
J. Eng. Math.
,
58
, pp.
19
30
.
26.
Irschik
,
K.
,
Sparboom
,
U.
, and
Oumeraci
,
H.
,
2002
, “
Breaking Wave Characteristics for the Loading of a Slender Pile
,”
Proceedings of the 28th International Conference on Coastal Engineering.
,
Cardiff, Wales
,
July 7–12
.
27.
Engsig-Karup
,
A. P.
,
Bingham
,
H. B.
, and
Lindberg
,
O.
,
2009
, “
An Efficient Flexible-Order Model for 3D Nonlinear Water Waves
,”
J. Comput. Phys.
,
228
(
6
), pp.
2100
2118
.
28.
Pakozdi
,
C.
,
Wang
,
W.
,
Kamath
,
A.
, and
Bihs
,
H.
,
2019
, “
Definition of the Vertical Spacing of a Sigma Grid Based on the Constant Truncation Error
,”
10. National Conference on Computational Mechanics
,
Trondheim, Norway
,
June 4
.
29.
Iserles
,
A.
,
1996
,
A First Course in the Numerical Analysis of Differential Equations
,
Cambridge University Press
,
Cambridge
.
30.
Hanselman
,
D. C.
, and
Littlefield
,
B. L.
,
2011
,
Mastering MATLAB
, 1st ed.,
Prentice Hall Press
,
Hoboken, NJ
.
31.
DNV-GL
,
2016
, “
Loads and Site Condition for Wind Turbines
,” Tech. Rep., DNVGL-ST-0437, DNV-GL, Nov.
32.
Choi
,
S. J.
,
Lee
,
K. H.
, and
Gudmestad
,
O. T.
,
2015
, “
The Effect of Dynamic Amplification Due to a Structure’s Vibration on Breaking Wave Impact
,”
Ocean Eng.
,
96
, pp.
8
20
.
You do not currently have access to this content.