Abstract

The primary aim of this research is to consider the correlation among environmental factors in calculating 100 and 1000 years of extreme load design criteria. This is done by considering load as energy transferred from external environment to the offshore system. Also, incorporating spatial and temporal dependence of environmental variables in the context of offshore design. A bivariate extreme value distribution and a conditional joint return level function are developed using the Gumbel–Hougaard copula. The offshore design risk criteria are developed for the finer grid locations (0.1 deg × 0.1 deg latitude/longitude grid) considering joint extreme wind and wave energy. The developed approach is tested using data for the Flemish Pass basin off the east coast of Canada. Along with the primary aim, the impact of climate change is investigated (time and space variability) by implementing the proposed methodology in two cases: the periods from 1959 to 1988 and 1989 to 2018. This study observed that climate change has caused 30% less correlation between wind speed and wave height in recent years (1989–2018) compared to the period of 1959–1988. The proposed extreme design wind speed is 39.7 m/s, and significant wave height is 16.4 m; their joint exceeding probability is 5.80 × 10−5 over an annual basis for a scenario of 100-year.

References

1.
Neufville
,
R. D.
, and
Scholtes
,
S.
,
2011
,
Flexibility in Engineering Design
,
MIT Press
,
Cambridge, UK
.
2.
Arif
,
M.
,
Khan
,
F.
,
Ahmed
,
S.
, and
Imtiaz
,
S.
,
2020a
, “
Rare Event Risk Analysis–Application to Iceberg Collision
,”
J. Loss Prev. Process Ind.
,
66
, p.
104199
.
3.
Arif
,
M.
,
Khan
,
F.
,
Ahmed
,
S.
, and
Imtiaz
,
S.
,
2020b
, “
Climate Change Impact: A Tail Based Bayesian Approach for Extreme Iceberg Risk Analysis
,”
Proc. Inst. Mech. Eng. O: J. Risk Reliab.
,
235
(
6
), pp.
963
972
.
4.
Paik
,
J. K.
, and
Thayamballi
,
A. K.
,
2007
,
Ship-Shaped Offshore Installations: Design, Building
,
Cambridge University Press
,
New York
.
5.
RP2A-WSD
,
2000
,
Recommended Practice for Planning, Designing and Constructing Fixed Offshore Platforms-Working Stress Design
,
American Petroleum Institute
,
Washington, DC
.
7.
Climate Signal Beta, European Heat Wave
,
2019
, https://www.climatesignals.org/events/european-heat-wave-june-2019.
8.
Young
,
I. R.
, and
Ribal
,
A.
,
2019
, “
Multiplatform Evaluation of Global Trends in Wind Speed and Wave Height
,”
Science
,
364
(
6440
), pp.
548
552
.
9.
Ogunbode
,
C. A.
,
Doran
,
R.
, and
Böhm
,
G.
,
2020
, “
Exposure to the IPCC Special Report on 1.5 C Global Warming Is Linked to Perceived Threat and Increased Concern About Climate Change
,”
Clim. Change
,
158
(
3–4
), pp.
361
375
.
11.
Wang
,
X.
,
Jiang
,
D.
, and
Lang
,
X.
,
2017
, “
Future Extreme Climate Changes Linked to Global Warming Intensity
,”
Sci. Bull.
,
62
(
24
), pp.
1673
1680
.
12.
Sulistiyono
,
H.
,
Khan
,
F.
,
Lye
,
L.
, and
Yang
,
M.
,
2015
, “
A Risk Based Approach to Developing Design Temperatures for Vessels Operating in Low Temperature Environment
,”
Ocean Eng.
,
2015
(
108
), pp.
813
819
.
13.
Zhang
,
X. S.
, and
Babovic
,
V.
,
2011
, “
A Real Options Approach to the Design and Architecture of Water Supply Systems Using Innovative Water Technologies Under Uncertainty
,”
J. Hydroinformatics
,
14
(
1
), pp.
13
29
.
14.
Deng
,
Y.
,
Cardin
,
M. A.
,
Babovic
,
V.
,
Santhanakrishnan
,
D.
,
Schmitter
,
P.
, and
Meshgi
,
A.
,
2013
, “
Valuing Flexibilities in the Design of Urban Water Management Systems
,”
Water Res.
,
47
(
20
), pp.
7162
7174
.
15.
Manocha
,
N.
, and
Babovic
,
V.
,
2018
, “
Sequencing Infrastructure Investments Under Deep Uncertainty Using Real Options Analysis
,”
Water
,
10
(
2
), p.
229
.
17.
HUSKY Oil Operations Limited as Operator
,
2000
, Appendix E: Assessment of Iceberg Impact Frequencies, White Rose Development Application, http://www.huskyenergy.com/downloads/areasofoperations/eastcoast/DevelopmentApplication/Vol5_AppendixE.pdf.
18.
Lombardo
,
F. T.
, and
Ayyub
,
B. M.
,
2014
, “
Analysis of Washington, DC, Wind and Temperature Extremes With Examination of Climate Change for Engineering Applications
,”
ASCE-ASME J. Risk Uncertain. Eng. Syst. A: Civ. Eng.
,
1
(
1
), p.
04014005
.
19.
Johannessen
,
K.
,
Meling
,
T. S.
, and
Haver
,
S.
,
2001
, “
Joint Distribution for Wind and Waves in the Northern North Sea
,”
International Journal of Offshore and Polar Engineering Conference
,
Stavanger, Norway
,
June 17
.
20.
Bay
,
B.
,
Yang
,
X. C.
, and
Zhang
,
Q. H.
,
2013
, “
Joint Probability Distribution of Winds and Waves From Wave Simulation of 20 Years (1989–2008)
,”
Water Sci. Eng.
,
6
(
3
), pp.
296
307
.
21.
Bitner-Gregersen
,
E. M.
,
2015
, “
Joint Met-Ocean Description for Design and Operations of Marine Structures
,”
Appl. Ocean Res.
,
51
, pp.
279
292
.
22.
Horn
,
J. T.
,
Bitner-Gregersen
,
E.
,
Krokstad
,
J. R.
,
Leira
,
B. J.
, and
Amdahl
,
J.
,
2018
, “
A New Combination of Conditional Environmental Distributions
,”
Appl. Ocean Res.
,
73
, pp.
17
26
.
23.
Lin
,
Y.
, and
Dong
,
S.
,
2019
, “
Wave Energy Assessment Based on Trivariate Distribution of Significant Wave Height, Mean Period and Direction
,”
Appl. Ocean Res.
,
87
, pp.
47
63
.
24.
Vanem
,
E.
,
2016
, “
Joint Statistical Models for Significant Wave Height and Wave Period in a Changing Climate
,”
Mar. Struct.
,
49
, pp.
180
205
.
25.
Lin
,
Y.
,
Dong
,
S.
, and
Tao
,
S.
,
2020
, “
Modelling Long-Term Joint Distribution of Significant Wave Height and Mean Zero-Crossing Wave Period Using a Copula Mixture
,”
Ocean Eng.
,
197
, p.
106856
.
26.
Haver
,
S.
, and
Winterstein
,
S. R.
,
2008
, “
Environmental Contour Lines: A Method for Estimating Long Term Extremes by a Short Term Analysis
,”
Trans. – Soc. Nav. Archit. Mar. Eng.
,
116
, pp.
116
127
.
27.
Ross
,
E.
,
Astrup
,
O. C.
,
Gregersen
,
E. B.
,
Bunn
,
N.
,
Feld
,
G.
,
Gouldby
,
B.
,
Huseby
,
A.
, et al
,
2020
, “
On Environmental Contours for Marine and Coastal Design
,”
Ocean Eng.
,
195
, p.
106194
.
28.
Vanem
,
E.
,
2015
, “
Uncertainties in Extreme Value Modelling of Wave Data in a Climate Change Perspective
,”
J. Ocean Eng. Mar. Energy
,
1
(
4
), pp.
339
359
.
29.
Staid
,
A.
,
Pinson
,
P.
, and
Guikema
,
S. D.
,
2015
, “
Probabilistic Maximum-Value Wind Prediction for Offshore Environments
,”
Wind Energy
,
18
(
10
), pp.
1725
1738
.
30.
Das
,
K. P.
,
Sams
,
C. A.
, and
Singh
,
V.
,
2016
, “
Characterization of the Tail of River Flow Data by Generalised Pareto Distribution
,”
J. Stat. Res.
,
48–50
(
2
), pp.
55
70
.
31.
Hu
,
H.
, and
Ayyub
,
B. M.
,
2017
, “
Extreme Precipitation Analysis and Prediction for a Changing Climate
,”
ASCE-ASME J. Risk Uncertain. Eng. Syst. A: Civ. Eng.
,
4
(
3
), p.
04018029
.
32.
Tawn
,
J. A.
,
1988
, “
Bivariate Extreme Value Theory: Models and Estimation
,”
Biometrika
,
75
(
3
), pp.
397
415
.
33.
Shiau
,
J. T.
,
2003
, “
Return Period of Bivariate Distributed Extreme Hydrological Events
,”
Stoch. Environ. Res. Risk Assess
,
17
(
1–2
), pp.
42
57
.
34.
Goodarzi
,
E.
,
Mirzaei
,
M.
, and
Ziaei
,
M.
,
2012
, “
Evaluation of Dam Overtopping Risk Based on Univariate and Bivariate Flood Frequency Analyses
,”
Can. J. Civ. Eng.
,
39
(
4
), pp.
374
387
.
35.
Gaidai
,
O.
,
Xu
,
X.
,
Wang
,
J.
,
Ye
,
R.
,
Cheng
,
Y.
, and
Karpa
,
O.
,
2020
, “
SEM-REV Offshore Energy Site Wind-Wave Bivariate Statistics by Hindcast
,”
Renew. Energy
,
156
, pp.
689
695
.
36.
Toshkova
,
D.
,
Asher
,
M.
,
Hutchinson
,
P.
, and
Lieven
,
N.
,
2020
, “
Automatic Alarm Setup Using Extreme Value Theory
,”
Mech. Syst. Signal Process.
,
139
, p.
106417
.
37.
Vanem
,
E.
,
2020
, “
Bivariate Regional Extreme Value Analysis for Significant Wave Height and Wave Period
,”
Appl. Ocean Res.
,
101
, p.
102266
.
38.
Coles
,
S.
,
Heffernan
,
J.
, and
Tawn
,
J.
,
1999
, “
Dependence Measures for Extreme Value Analyses
,”
Extremes
,
2
(
4
), pp.
339
365
.
39.
Rodriguez
,
J. C.
,
2007
, “
Measuring Financial Contagion: A Copula Approach
,”
J. Empir. Finance
,
14
(
3
), pp.
401
423
.
40.
Candela
,
A.
, and
Aronica
,
G. T.
,
2017
, “
Probabilistic Flood Hazard Mapping Using Bivariate Analysis Based on Copulas
,”
ASCE-ASME J. Risk Uncertain. Eng. Syst. A: Civ. Eng.
,
3
(
1
), p.
A4016002
. .
41.
Zhang
,
Y.
,
Kim
,
C. W.
,
Beer
,
M.
,
Dai
,
H.
, and
Soares
,
C. G.
,
2018
, “
Modeling Multivariate Ocean Data Using Asymmetric Copulas
,”
Coast. Eng.
,
135
, pp.
91
111
.
42.
Kang
,
L.
,
Jiang
,
S.
,
Hu
,
X.
, and
Li
,
C.
,
2019
, “
Evaluation of Return Period and Risk in Bivariate Non-stationary Flood Frequency Analysis
,”
Water
,
11
(
1
), p.
79
.
43.
Fang
,
G.
,
Pan
,
R.
, and
Hong
,
Y.
,
2020
, “
Copula-Based Reliability Analysis of Degrading Systems With Dependent Failures
,”
Reliab. Eng. Syst. Saf.
,
193
, p.
106618
.
44.
Liu
,
X. D.
,
Pan
,
F.
,
Cai
,
W.
, and
Peng
,
R.
,
2020
, “
Correlation and Risk Measurement Modeling: A Markov-Switching Mixed Clayton Copula Approach
,”
Reliab. Eng. Syst. Saf.
,
197
, p.
106808
.
45.
Hu
,
H.
, and
Ayyub
,
B. M.
,
2019
, “
Validating and Enhancing Extreme Precipitation Projections by Downscaled Global Climate Model Results and Copula Methods
,”
J. Hydrol. Eng.
,
24
(
7
), p.
04019019
.
46.
Kendall
,
M. G.
,
1938
, “
A New Measure of Rank Correlation. Biometrika
,”
JSTOR
,
30
(
1/2
), pp.
81
93
.
47.
Zar
,
J. H.
,
2005
, “Spearman Rank Correlation,”
Encyclopedia of Biostatistics
,
Wiley Online Library
. Vol.
7
.
48.
Joe
,
H.
,
2014
,
Dependence Modeling With Copulas
,
CRC Press
.
49.
Haugh
,
M.
,
2016
,
An Introduction to Copulas. IEOR E4602: Quantitative Risk Management
,
Columbia University
,
New York
.
50.
Castillo
,
E.
,
Hadi
,
A. S.
,
Balakrishnan
,
N.
, and
Balakrishnan
,
J. N.
,
2005
,
Extreme Value and Related Models With Applications in Engineering and Science
,
Wiley
,
Hoboken, NJ
.
51.
Sklar
,
A.
,
1959
, “
Fonctions de Repartition an Dimensions et Leurs Marges
,”
Publ. Inst. Statist. Univ. Paris
,
8
, pp.
229
231
.
52.
Segers
,
J.
,
2012
, “
Asymptotics of Empirical Copula Processes Under Non-restrictive Smoothness Assumptions
,”
Bernoulli
,
18
(
3
), pp.
764
782
.
53.
Gudendorf
,
G.
, and
Segers
,
J.
,
2010
, “Extreme-Value Copulas,”
Copula Theory and Its Applications
,
Springer
,
New York
, pp.
127
145
.
54.
Hutchinson
,
T. P.
, and
Lai
,
C. D.
,
1990
,
Continuous Bivariate Distributions Emphasising Applications
,
Rumsby
,
Adelaide
.
55.
Balakrishnan
,
N.
, and
Lai
,
C. D.
,
2009
,
Continuous Bivariate Distributions
,
Springer Science and Business Media
.
56.
Clayton
,
D. G.
,
1978
, “
A Model for Association in Bivariate Life Tables and Its Application in Epidemiological Studies of Familial Tendency in Chronic Disease Incidence
,”
Biometrika
,
65
(
1
), pp.
141
151
.
57.
Hosking
,
J. R.
,
Wallis
,
J. R.
, and
Wood
,
E. F.
,
1985
, “
Estimation of the Generalized Extreme-Value Distribution by the Method of Probability-Weighted Moments
,”
Technometrics
,
27
(
3
), pp.
251
261
.
58.
Genest
,
C.
,
Rémillard
,
B.
, and
Beaudoin
,
D.
,
2009
, “
Goodness-of-Fit Tests for Copulas: A Review and a Power Study
,”
Insur.: Math. Econ.
,
44
(
2
), pp.
199
213
.
59.
Greenwood
,
J. A.
,
Landwehr
,
J. M.
,
Matalas
,
N. C.
, and
Wallis
,
J. R.
,
1979
, “
Probability Weighted Moments: Definition and Relation to Parameters of Several Distributions Expressable in Inverse Form
,”
Water Resour. Res.
,
15
(
5
), pp.
1049
1054
.
60.
Hosking
,
J. R.
,
1990
, “
L-moments: Analysis and Estimation of Distributions Using Linear Combinations of Order Statistics
,”
J. R. Stat. Soc. Series B: Stat. Methodol.
,
52
(
1
), pp.
105
124
.
61.
Martins
,
E. S.
, and
Stedinger
,
J. R.
,
2000
, “
Generalized Maximum-Likelihood Generalized Extreme-Value Quantile Estimators for Hydrologic Data
,”
Water Resour. Res.
,
36
(
3
), pp.
737
744
.
62.
Oil
,
G. L.
, and
GmbH
,
G.
,
2013
, Rules for the Certification and Construction IV Industrial Services-Offshore Substations. Part.
63.
Blackledge
,
J.
,
Coyle
,
E.
,
Kearney
,
D.
,
McGuirk
,
R.
, and
Norton
,
B.
,
2013
, “
Estimation of Wave Energy From Wind Velocity
,”
Eng. Lett.
,
4
, pp.
158
170
.
65.
Swail
,
V. R.
,
Cardone
,
V. J.
,
Ferguson
,
M.
,
Gummer
,
D. J.
,
Harris
,
E. L.
,
Orelup
,
E. A.
, and
Cox
,
A. T.
,
2006
, “
The MSC50 Wind and Wave Reanalysis
,”
Proceedings of the 9th International Workshop on Wave Hindcasting and Forecasting
,
Victoria, BC, Canada
,
Sept. 25
.
66.
Devore
,
J. L.
,
2011
,
Probability and Statistics for Engineering and the Sciences
,
Cengage Learning
,
Boston, MA
.
You do not currently have access to this content.