Abstract

The investigation of innovative macroalgal cultivation is important and needed to optimize farming operations, increase biomass production, reduce the impact on the ecosystem, and lower system and operational costs. However, most macroalgal farming systems (MFSs) are stationary, which need to occupy a substantial coastal area, require extensive investment in farm infrastructure, and cost high fertilizer and anchoring expenses. This study aims to model, analyze, and support a novel binary species free-floating longline macroalgal cultivation concept. The expected outcomes could provide a basis for the design and application of the novel MFS to improve biomass production, decrease costs, and reduce the impact on the local ecosystem. In this paper, Saccharina latissima and Nereocystis luetkeana were modeled and validated, and coupled with longline to simulate the binary species MFS free float in various growth periods and associated locations along the US west coast. The numerical predictions indicated the possibility of failure on the longline and breakage at the kelp holdfasts is low. However, the large forces due to an instantaneous change in dynamic loads caused by loss of hydrostatic buoyancy when the longline stretches out of the water would damage the kelps. Buoy-longline contact interactions could damage the buoy, resulting in the loss of the system by sinking. Furthermore, the kelp-longline and kelp-kelp entanglements could potentially cause kelp damage.

References

1.
Johnstone
,
R.
, and
Ólafsson
,
E.
,
1995
, “
Some Environmental Aspects of Open Water Algal Cultivation: Zanzibar, Tanzania
,”
Ambio
,
24
(
7–8
), pp.
465
469
.
2.
Folke
,
C.
,
Kautsky
,
N.
,
Berg
,
H.
,
Jansson
,
A.
, and
Troell
,
M.
,
1998
, “
The Ecological Footprint Concept for Sustainable Seafood Production: A Review
,”
Ecol. Appl.
,
8
(
sp1
), pp.
63
71
.
3.
Bartsch
,
I.
,
Wiencke
,
C.
,
Bischof
,
K.
,
Buchholz
,
C. M.
,
Buck
,
B. H.
,
Eggert
,
A.
,
Feuerpfeil
,
P.
, et al
,
2008
, “
The Genus Laminaria sensu lato: Recent Insights and Developments
,”
Eur. J. Phycol.
,
43
(
1
), pp.
1
86
.
4.
James
,
M. A.
,
2010
, “A Review of Initiatives and Related RandD Being Undertaken in the UK and Internationally Regarding the Use of Macroalgae as a Basis for Biofuel Production and Other Non-Food Uses Relevant to Scotland,” Report commissioned by the Marine Scotland.
5.
Hughes
,
A. D.
,
Kelly
,
M. S.
,
Black
,
K. D.
, and
Stanley
,
M. S.
,
2012
, “
Biogas From Macroalgae: Is It Time to Revisit the Idea?
,”
Biotechnol. Biofuels Bioprod.
,
5
(
86
), pp.
1
7
.
6.
Sharmila
,
G. V.
,
Kumar
,
D. M.
,
Pugazherdi
,
A.
,
Bajhaiya
,
A. K.
,
Gugulothu
,
P.
, and
Banu
,
R. J.
,
2021
, “
Biofuel Production From Macroalgae: Present Scenario and Future Scope
,”
Bioeengineered
,
12
(
2
), pp.
9216
9238
.
7.
Fernand
,
F.
,
Israel
,
A.
,
Skjermo
,
J.
,
Wichard
,
T.
,
Timmermans
,
K. R.
, and
Golberg
,
A.
,
2017
, “
Offshore Macroalgae Biomass for Bioenergy Production: Environmental Aspects, Technological Achievements and Challenges
,”
Renewable Sustainable Energy Rev.
,
75
, pp.
35
45
.
8.
Bak
,
U. G.
,
Gregersen
,
O.
, and
Infante
,
J.
,
2020
, “
Technical Challenges for Offshore Cultivation of Kelp Species: Lessons Learned and Future Directions
,”
Bot. Mar.
,
63
(
4
), pp.
341
353
.
9.
Peteiro
,
C.
,
Sanchez
,
N.
, and
Martinez
,
B.
,
2016
, “
Mariculture of the Asian Kelp Undaria pinnatifida and the Native Kelp Saccharina latissima Along the Atlantic Coast of Southern Europe: An Overview
,”
Algal Res.
,
15
, pp.
9
23
.
10.
Correa
,
T.
,
Gutiérrez
,
A.
,
Flores
,
R.
,
Buschmann
,
A. H.
,
Cornejo
,
P.
, and
Bucarey
,
C.
,
2016
, “
Production and Economic Assessment of Giant Kelp Macrocystis Pyrifera Cultivation for Abalone Feed in the South of Chile
,”
Aquacult. Res.
,
47
(
3
), pp.
698
707
.
11.
Lucas
,
J. S.
,
Southgate
,
P. C.
, and
Tucker
,
C. S.
,
2019
,
Aquaculture: Farming Aquatic Animals and Plants
, 3rd ed.,
Wiley-Blackwell
,
Hoboken, NJ
, pp.
276
277
.
12.
Pillay
,
T. V. R.
,
1990
,
Aquaculture—Principles and Practices
, 2nd ed.,
Blackwell Science Ltd
,
Hoboken, NJ
, pp.
562
574
.
13.
Landau
,
M.
,
1992
,
Introduction to Aquaculture
, 1st ed.,
John Wiley and Sons, Inc.
,
Hoboken, NJ
, pp.
143
163
.
14.
Sherman
,
M. T.
,
Blaylock
,
R.
,
Lucas
,
K.
,
Capron
,
M. E.
,
Stewart
,
J. R.
,
DiMarco
,
S. F.
,
Thyng
,
K.
, et al
,
2018
, “
SeaweedPaddock: Initial Modeling and Design for a Sargassum Ranch
,”
Proceedings of the OCEANS 2018 MTS/IEEE Charleston
,
Charleston, SC
,
Oct. 22–25
, pp.
1
6
.
15.
Peteiro
,
C.
, and
Freire
,
O.
,
2013
, “
Biomass Yield and Morphological Features of the Seaweed Saccharina latissima Cultivated at Two Different Sites in a Coastal Bay in the Atlantic Coast of Spain
,”
J. Appl. Phycol.
,
25
(
1
), pp.
205
213
.
16.
Peteiro
,
C.
,
Sánchez
,
N.
,
Dueñas-Liaño
,
C.
, and
Martínez
,
B.
,
2014
, “
Open-Sea Cultivation by Transplanting Young Fronds of the Kelp Saccharina latissima
,”
J. Appl. Phycol.
,
26
(
1
), pp.
519
528
.
17.
Vettori
,
D.
, and
Nikora
,
V.
,
2018
, “
Flow-Seaweed Interactions: A Laboratory Study Using Blade Models
,”
Environ. Fluid Mech.
,
18
(
3
), pp.
611
636
.
18.
Vettori
,
D.
, and
Nikora
,
V.
,
2019
, “
Flow-Seaweed Interactions of Saccharina latissima at a Blade Scale: Turbulence, Drag Force, and Blade Dynamics
,”
Aquat. Sci.
,
61
(
4
), pp.
1
16
.
19.
Vettori
,
D.
, and
Nikora
,
V.
,
2019
, “
Hydrodynamic Performance of Vegetation Surrogates in Hydraulic Studies: A Comparative Analysis of Seaweed Blades and Their Physical Models
,”
J. Hydraul. Res.
,
58
(
2
), pp.
248
261
.
20.
Endresen
,
P. C.
,
Norvik
,
C.
,
Kristiansen
,
D.
,
Birkevold
,
J.
, and
Volent
,
Z.
,
2019
, “
Current Induced Drag Forces on Cultivated Sugar Kelp
,”
Proceedings of ASME 2019 38th International Conference on Ocean, Offshore and Arctic Engineering, Volume 6: Ocean Space Utilization
,
Glasgow, Scotland, UK
,
June 9–14
, pp.
1
10
.
21.
Buck
,
B. H.
, and
Buchholz
,
C. M.
,
2005
, “
Response of Offshore Cultivated Laminaria saccharina to Hydrodynamic Forcing in the North Sea
,”
Aquaculture
,
250
(
3–4
), pp.
674
691
.
22.
Vettori
,
D.
, and
Nikora
,
V.
,
2017
, “
Morphological and Mechanical Properties of Blades of Saccharina latissima
,”
Estuarine, Coastal Shelf Sci.
,
196
, pp.
1
9
.
23.
Brucem
,
M.
,
2012
, “
Numerical Simulation of Seaweed and Flow Interaction
,”
M.S. thesis
,
School of Engineering, University of Aberdeen, King’s College
,
Aberdeen, Scotland
.
24.
Zhu
,
L.
,
Huguenard
,
K.
, and
Fredriksson
,
W. D.
,
2019
, “
Dynamic Analysis of Longline Aquaculture Systems With a Coupled 3D Numerical Model
,”
Proceedings of 29th International Ocean and Polar Engineering Conference
,
Honolulu, HI
,
June 16–21
, pp.
1
6
.
25.
Chen
,
M.
,
Yim
,
C. S.
,
Cox
,
T. D.
,
Yang
,
Z.
, and
Mumford
,
F. T.
,
2020
, “
Hydrodynamic Analysis of Macroalgae Local Model Using Computational Fluid Dynamics
,”
Proceedings of ASME 2020 39th International Conference on Ocean, Offshore and Arctic Engineering, Volume 6B: Ocean Engineering
,
Virtual, Online
,
Aug. 3–7
,
ASME
, p.
V06BT06A031
.
26.
Zhu
,
L.
,
Lei
,
J.
,
Huguenard
,
K.
, and
Fredriksson
,
D. W.
,
2021
, “
Wave Attenuation by Suspended Canopies With Cultivated Kelp (Saccharina latissima)
,”
Coastal Eng.
,
168
, p.
103947
.
27.
Foreman
,
R. E.
,
1984
, “
Studies on Nereocystis Growth in British Columbia, Canada
,”
Hydrobiologia
,
116
(
1
), pp.
325
332
.
28.
Koehl
,
M. A. R.
, and
Alberte
,
R. S.
,
1988
, “
Flow, Flapping, and Photosynthesis of Nereocystis luetkeana: A Functional Comparison of Undulate and Flat Blade Morphologies
,”
Mar. Biol.
,
99
(
3
), pp.
435
444
.
29.
Johnson
,
A.
, and
Koehl
,
M. A. R.
,
1994
, “
Maintenance of Dynamic Strain Similarity and Environmental Stress Factor in Different Flow Habitats: Thallus Allometry and Material Properties of a Giant Kelp
,”
J. Exp. Biol.
,
195
(
1
), pp.
381
410
.
30.
Liggan
,
L. M.
, and
Martone
,
P. T.
,
2018
, “
Under Pressure: Biomechanical Limitations of Developing Pneumatocysts in the Bull Kelp (Nereocystis luetkeana, Phaeophyceae)
,”
J. Phycol.
,
54
(
5
), pp.
608
615
.
31.
Denny
,
M.
,
Gaylrod
,
B. P.
, and
Cowen
,
B.
,
1997
, “
Flow and Flexibility. II. The Roles of Size and Shape in Determining Wave Forces on the Bull Kelp Nereocystis luetkeana
,”
J. Exp. Biol.
,
200
(
31
), pp.
65
83
.
32.
Morison
,
J. R.
,
O’Brien
,
M. P.
,
Johnson
,
J. W.
, and
Schaaf
,
S. A.
,
1950
, “
The Force Exerted by Surface Waves on Piles
,”
Pet. Trans. AIME
,
2846
(
189
), pp.
149
157
.
33.
Masteller
,
C. C.
,
Finnegan
,
N. J.
,
Warrick
,
J. A.
, and
Miller
,
M.
,
2015
, “
Kelp, Cobbles, and Currents: Biologic Reduction of Coarse Grain Entrainment Stress
,”
Geology
,
43
(
6
), pp.
543
546
.
34.
Chen
,
M.
,
Yim
,
C. S.
,
Cox
,
T. D.
,
Wang
,
T.
,
Huesemann
,
H. M.
,
Yang
,
Z.
,
Mumford
,
F. T.
, and
Wood
,
G.
,
2019
, “
Hydrodynamic Load Modeling for Offshore Free-Floating Macroalgal Aquaculture Under Extreme Environmental Conditions
,”
Proceedings of ASME 2019 38th International Conference on Ocean, Offshore and Arctic Engineering. Volume 6: Ocean Space Utilization
,
Glasgow, Scotland, UK
, June 9–14
,
ASME
, p.
V006T05A008
.
35.
Purcell-Meyerink
,
D.
,
Packer
,
M. A.
,
Wheeler
,
T. T.
, and
Hayes
,
M.
,
2021
, “
Aquaculture Production of the Brown Seaweeds Laminaria pigitata and Macrocystis pyrifera: Applications in Food and Pharmaceuticals
,”
Molecules
,
26
(
5
), p.
1306
.
36.
Utter
,
B. D.
, and
Denny
,
M. W.
,
1996
, “
Wave Induced Forces on the Giant Kelp Macrocystis pyrifera (Agardh): Field Test of a Computational Model
,”
J. Exp. Biol.
,
199
(
12
), pp.
2645
2654
.
37.
Orcina
,
2009
, OrcaFlex Manual version 9.3a. https://www.orcina.com/orcaflex/
38.
Dean
,
R. G.
, and
Dalrymple
,
R. A.
,
1985
,
Water Wave Mechanics for Engineers and Scientists, Vol 2. Advanced Series on Ocean Engineering
,
World Scientific Publishing
,
Singapore
, pp. 41–73 and 187–210.
39.
Hasselmann
,
K.
,
Barnett
,
T. P.
,
Bouws
,
E.
,
Carlson
,
H.
,
Cartwright
,
D. E.
,
Enke
,
K.
,
Ewing
,
J. A.
, et al
,
1973
, “Measurements of Wind-Wave Growth and Swell Decay During the Joint North Sea Wave Project (JONSWAP),” Ergnzungsheft zur Deutschen Hydrographischen Zeitschrift Reihe A(8) (Nr. 12), 95. http://resolver.tudelft.nl/uuid:f204e188-13b9-49d8-a6dc-4fb7c20562fc
40.
Chung
,
J.
, and
Hulbert
,
G. M.
,
1993
, “
A Time Integration Algorithm for Structural Dynamics With Improved Numerical Dissipation: The Generalized-α Method
,”
ASME J. Appl. Mech.
,
60
(
2
), pp.
371
375
.
41.
Mohtat
,
A.
,
Yim
,
C. S.
, and
Osborne
,
A. R.
,
2018
, “
Energy Content Analysis of Closed Basin Wave Simulation Using Linear and Nonlinear Fourier Analysis
,”
Proceedings of ASME 2018 37th International Conference on Ocean, Offshore and Arctic Engineering, Volume 3: Structures, Safety, and Reliability
,
Madrid, Spain
,
June 17–22
,
ASME
, p.
V003T02A036
.
42.
Whiting
,
M. J.
,
Wang
,
T.
,
Yang
,
Z.
,
Huesemann
,
M.
,
Wolfram
,
P.
,
Munford
,
T. F.
, and
Righi
,
D.
,
2020
, “
Simulating the Trajectory and Biomass Growth of Free-Floating Macroalgal Cultivation Platforms Along the U.S. West Coast
,”
J. Mar. Sci. Eng.
,
8
(
11
), pp.
938
957
.
43.
Ryan
,
C.
,
Patyten
,
M.
, and
Wertz
,
L. A.
,
2004
, “Annual Status of the Fisheries Report Through 2003,” California Department of Fish and Game Marine Region, http://portal.nceas.ucsb.edu/working_group/science-frameworks-for-ebm/background-information/Annual_status_fisheries_DFG_2003.pdf/
44.
Andersen
,
G. S.
,
2013
, “
Growth, Survival and Reproduction in the Kelp Saccharina latissima, Seasonal Patterns and the Impact of Epibionts
,”
Ph.D. thesis
,
Department of Biosciences, University of Oslo
,
Norway
.
45.
Kerrison
,
P.
,
Stanley
,
M.
, and
Hughes
,
A.
,
2018
, “
Textile Substrate Seeding of Saccharina latissima Sporophytes Using a Binder: An Effective Method for the Aquaculture of Kelp
,”
Algal Res.
,
33
, pp.
352
357
.
46.
Ochi
,
M.
,
1998
,
Ocean Waves: The Stochastic Approach (Cambridge Ocean Technology Series)
,
Cambridge University Press
,
Cambridge
, pp.
149
174
.
You do not currently have access to this content.