Abstract

In recent years, increasing ship sizes and associated increasing wave loads have led to a demand for prediction tools quantifying the ship-induced loads on waterways. Depth-averaged numerical models, using a free-surface pressure term, are a prominent method to obtain the relevant design parameters. These models incorporate the wave deformation processes due to attributes of complex bathymetries, while allowing for an efficient simulation of large computational domains. The nonhydrostatic shallow-water-equations (SWE) model REEF3D::SFLOW uses a quadratic pressure approximation and high-order discretization schemes. This paper presents the implementation of a pressure term to account for the displacement of the free surface by solid moving objects. Two test cases verifying the implementation are shown based upon the analytical one-dimensional solution of the wave propagation due to surface pressure and the estimation of Havelock angles. These verification tests are the first step toward a holistic model, combining a large scale model with computational fluid dynamics (CFD) simulations near waterway banks.

References

1.
Haralambides
,
H.
,
2017
, “
Globalization, Public Sector Reform, and the Role of Ports in International Supply Chains
,”
Maritime Econ. Logist.
,
19
(
1
), pp.
1
51
.
2.
Parnell
,
K. E.
,
Soomere
,
T.
,
Zaggia
,
L.
,
Rodin
,
A.
,
Lorenzetti
,
G.
,
Rapaglia
,
J.
, and
Scarpa
,
G. M.
,
2015
, “
Ship-Induced Solitary Riemann Waves of Depression in Venice Lagoon
,”
Phys. Lett. A
,
379
(
6
), pp.
555
559
.
3.
Melling
,
G.
,
Jansch
,
H.
,
Kondziella
,
B.
,
Uliczka
,
K.
, and
Gätje
,
B.
,
2020
, “
Evaluation of Optimised Groyne Designs in Response to Long-Period Ship Wave Loads at Juelssand in the Lower Elbe Estuary: 28
,”
Die Küste
,
89
(
89
), pp.
29
56
.
4.
Dempwolff
,
L.-C.
,
Melling
,
G.
,
Windt
,
C.
,
Lojek
,
O.
,
Martin
,
T.
,
Holzwarth
,
I.
,
Bihs
,
H.
, and
Goseberg
,
N.
,
2022
, “
Loads and Effects of Ship-Generated, Drawdown Waves in Confined Waterways—A Review of Current Knowledge and Methods
,”
J. Coast. Hydraul. Struct.
,
2
(
46
).
5.
Melling
,
G.
,
Jansch
,
H.
,
Kondziella
,
B.
,
Uliczka
,
K.
, and
Gätje
,
B.
,
2019
, “
Damage to Rock Groynes From Long-Period Ship Waves: Towards a Probabilistic Design Method
,”
Proceedings of the Coastal Structures 2019
,
Hannover, Germany
,
N.
Goseberg
and
T.
Schlurmann
, eds.
6.
Taylor
,
D.
,
Hall
,
K.
, and
Macdonald
,
N.
,
2007
, “
Investigations Into Ship Induced Hydrodynamics and Scour in Confined Shipping Channels
,”
Proceedings of the Ninth International Coastal Symposium
,
Queensland, Australia
,
C.
Lemckert
, ed.
7.
Liedermann
,
M.
,
Tritthart
,
M.
,
Gmeiner
,
P.
,
Hinterleitner
,
M.
,
Schludermann
,
E.
,
Keckeis
,
H.
, and
Habersack
,
H.
,
2014
, “
Typification of Vessel-Induced Waves and Their Interaction With Different Bank Types, Including Management Implications for River Restoration Projects
,”
Hydrobiologia
,
729
(
1
), pp.
17
31
.
8.
Silinski
,
A.
,
Heuner
,
M.
,
Schoelynck
,
J.
,
Puijalon
,
S.
,
Schröder
,
U.
,
Fuchs
,
E.
,
Troch
,
P.
,
Bouma
,
T. J.
,
Meire
,
P.
, and
Temmerman
,
S.
,
2015
, “
Effects of Wind Waves Versus Ship Waves on Tidal Marsh Plants: A Flume Study on Different Life Stages of Scirpus Maritimus
,”
PLoS One
,
10
(
3
), p.
e0118687
.
9.
Garel
,
E.
,
López Fernández
,
L.
, and
Collins
,
M.
,
2008
, “
Sediment Resuspension Events Induced by the Wake Wash of Deep-Draft Vessels
,”
Geo-Mar. Lett.
,
28
(
4
), pp.
205
211
.
10.
Scarpa
,
G. M.
,
Zaggia
,
L.
,
Manfè
,
G.
,
Lorenzetti
,
G.
,
Parnell
,
K.
,
Soomere
,
T.
,
Rapaglia
,
J.
, and
Molinaroli
,
E.
,
2019
, “
The Effects of Ship Wakes in the Venice Lagoon and Implications for the Sustainability of Shipping in Coastal Waters
,”
Sci. Rep.
,
9
(
1
), p.
19014
.
11.
Soomere
,
T.
,
2007
, “
Nonlinear Components of Ship Wake Waves
,”
Appl. Mech. Rev.
,
60
(
3
), pp.
120
138
.
12.
Fleit
,
G.
, and
Baranya
,
S.
,
2021
, “
Acoustic Measurement of Ship Wave–Induced Sediment Resuspension in a Large River
,”
J. Waterway Port Coast. Ocean Eng.
,
147
(
2
), p.
04021001
.
13.
Bhowmik
,
N. G.
,
Demissie
,
M.
, and
Guo
,
C. Y.
,
1982
, “
Waves Generated by River Traffic and Wind on the Illinois and Mississpi Rivers
.” https://experts.illinois.edu/en/publications/waves-generated-by-river-traffic-and-wind-on-the-illinois-and-mis: WRC Research Report 167.
14.
Havelock
,
T. H.
,
1908
, “
The Propagation of Groups of Waves in Dispersive Media, With Application to Waves on Water Produced by a Travelling Disturbance
,”
Proc. R. Soc. Lond. Ser. A Contain. Pap. Math. Phys. Charact.
,
81
(
549
), pp.
398
430
.
15.
Ersan
,
D. B.
, and
Beji
,
S.
,
2013
, “
Numerical Simulation of Waves Generated by a Moving Pressure Field
,”
Ocean Eng.
,
59
, pp.
231
239
.
16.
David
,
C. G.
,
Roeber
,
V.
,
Goseberg
,
N.
, and
Schlurmann
,
T.
,
2017
, “
Generation and Propagation of Ship-Borne Waves—Solutions From a Boussinesq-Type Model
,”
Coast. Eng.
,
127
, pp.
170
187
.
17.
BAW
.
Principles for the Design of Bank and Bottom Protection for Inland Waterways (GBB): Code of Practice Federal Waterways Engineering and Research Institute of Germany Karlsruhe, Germany
, https://izw.baw.de/publikationen/merkblaetter/0/BAWCodeofPractice_Principles_Bank_Bottom_Protection_Inland_Waterways_GBB_2010.pdf
18.
Almström
,
B.
, and
Larson
,
M.
,
2020
, “
Measurements and Analysis of Primary Ship Waves in the Stockholm Archipelago, Sweden
,”
J. Mar. Sci. Eng.
,
8
(
10
), p.
743
.
19.
Terziev
,
M.
,
Tezdogan
,
T.
, and
Incecik
,
A.
,
2020
, “
Modelling the Hydrodynamic Effect of Abrupt Water Depth Changes on a Ship Travelling in Restricted Waters Using CFG
,”
Ships Offshore Struct.
,
16
(
10
), pp.
1
17
.
20.
Elsherbiny
,
K.
,
Terziev
,
M.
,
Tezdogan
,
T.
,
Incecik
,
A.
, and
Kotb
,
M.
,
2020
, “
Numerical and Experimental Study on Hydrodynamic Performance of Ships Advancing Through Different Canals
,”
Ocean Eng.
,
195
, p.
106696
.
21.
Gourlay
,
T. P.
,
Ha
,
J. H.
,
Mucha
,
P.
, and
Uliczka
,
K.
,
2015
, “
Sinkage and Trim of Modern Container Ships in Shallow Water
,”
Proceedings of the 22nd Australasian Coasts & 15th Ports Conference 2015
,
Auckland, New Zealand
, p.
344
.
22.
Abbasnia
,
A.
, and
Soares
,
C. G.
,
2019
, “
Fully Nonlinear and Linear Ship Waves Modelling Using the Potential Numerical Towing Tank and Nurbs
,”
Eng. Anal. Bound. Elem.
,
103
, pp.
137
144
.
23.
Maynord
,
S.
,
2004
, “
Ship Effects at the Bankline of Navigation Channels
,”
Proc. Inst. Civil Eng. – Maritime Eng.
,
157
(
2
), pp.
93
100
.
24.
Macdonald
,
N. J.
,
2003
, “
Numerical Modelling of Coupled Drawdown and Wake
,”
Proceedings of the Canadian Coastal Conference 2003.
25.
Almström
,
B.
,
Roelvink
,
D.
, and
Larson
,
M.
,
2021
, “
Predicting Ship Waves in Sheltered Waterways – An Application of Xbeach to the Stockholm Archipelago, Sweden
,”
Coast. Eng.
,
170
, p.
104026
.
26.
Brocchini
,
M.
,
2013
, “
A Reasoned Overview on Boussinesq-Type Models: The Interplay Between Physics, Mathematics and Numerics
,”
Proc. Math. Phys. Eng. Sci.
,
469
(
2160
), p.
20130496
.
27.
Ertekin
,
R. C.
,
Hayatdavoodi
,
M.
, and
Kim
,
J. W.
,
2014
, “
On Some Solitary and Cnoidal Wave Diffraction Solutions of the Green–Naghdi Equations
,”
Appl. Ocean. Res.
,
47
, pp.
125
137
.
28.
Zhao
,
B. B.
,
Duan
,
W. Y.
,
Demirbilek
,
Z.
,
Ertekin
,
R. C.
, and
Webster
,
W. C.
,
2016
, “
A Comparative Study Between the Ign-2 Equations and the Fully Nonlinear, Weakly Dispersive Boussinesq Equations
,”
Coast. Eng.
,
111
, pp.
60
69
.
29.
Stockstill
,
R. L.
, and
Berger
,
R. C.
,
2001
, “
Simulating Barge Drawdown and Currents in Channel and Backwater Areas
,”
J. Waterway Port Coastal Ocean Eng.
,
127
(
5
), pp.
290
298
.
30.
Zhou
,
M.
,
Roelvink
,
D.
,
Verheij
,
H.
, and
Ligteringen
,
H.
,
2013
, “
Study of Passing Ship Effects Along a Bank by Delft3D-Flow and Xbeach
,”
Proceedings of the International Workshop on Nautical Traffic Models 2013
,
Delft, The Netherlands
.
31.
de Jong
,
M. P. C.
,
Roelvink
,
D.
,
Reijmerink
,
B.
, and
Breederveld
,
C.
,
2013
, “
Numerical Modelling of Passing-Ship Effects in Complex Geometries and on Shallow Water
,”
Proceedings of Pianc Smart Rivers 2013
,
Liege, Maastricht
.
32.
Jiang
,
T.
,
Henn
,
R.
, and
Sharma
,
S. D.
,
2002
, “
Wash Waves Generated by Ships Moving on Fairways of Varying Topography
,”
Twenty-Fourth Symposium on Naval Hydrodynamics 2002
,
Fukuoka, Japan
.
33.
Nascimento
,
M. F. d.
,
Neves
,
C. F.
, and
de Freitas Maciel
,
G.
,
2009
, “
Propagation of Ship Waves on a Sloping Bottom
,”
Proceedings of the 31st International Conference on Coastal Engineering
,
Hamburg, Germany, 2008
.
34.
Torsvik
,
T.
,
Pedersen
,
G.
, and
Dysthe
,
K.
,
2009
, “
Waves Generated by a Pressure Disturbance Moving in a Channel With a Variable Cross-Sectional Topography
,”
J. Waterway Port Coast. Ocean Eng.
,
135
(
3
), pp.
120
123
.
35.
Rodrigues
,
S.
,
Santos
,
J. A.
, and
Soares
,
C. G.
,
2018
, “
Numerical and Experimental Study of Ship-Generated Waves
,”
Proceedings of the Fourth International Conference on Maritime Technology and Engineering, MARTECH 2018
,
Lisbon, Portugal
,
C. G.
Soares
and
T. A.
Santos
, ed.
36.
Zaggia
,
L.
,
Lorenzetti
,
G.
,
Manfé
,
G.
,
Scarpa
,
G. M.
,
Molinaroli
,
E.
,
Parnell
,
K. E.
,
Rapaglia
,
J. P.
,
Gionta
,
M.
, and
Soomere
,
T.
,
2017
, “
Fast Shoreline Erosion Induced by Ship Wakes in a Coastal Lagoon: Field Evidence and Remote Sensing Analysis
,”
PLoS One
,
12
(
10
), p.
e0187210
.
37.
Fleit
,
G.
,
Baranya
,
S.
,
Rüther
,
N.
,
Bihs
,
H.
,
Krámer
,
T.
, and
Józsa
,
J.
,
2016
, “
Investigation of the Effects of Ship Induced Waves on the Littoral Zone With Field Measurements and CFD Modeling
,”
Water
,
8
(
7
), p.
300
.
38.
Bellafiore
,
D.
,
Zaggia
,
L.
,
Broglia
,
R.
,
Ferrarin
,
C.
,
Barbariol
,
F.
,
Zaghi
,
S.
,
Lorenzetti
,
G.
,
Manfè
,
G.
,
de Pascalis
,
F.
, and
Benetazzo
,
A.
,
2018
, “
Modeling Ship-Induced Waves in Shallow Water Systems: The Venice Experiment
,”
Ocean Eng.
,
155
, pp.
227
239
.
39.
Wang
,
W.
,
Martin
,
T.
,
Kamath
,
A.
, and
Bihs
,
H.
,
2020
, “
An Improved Depth-Averaged Nonhydrostatic Shallow Water Model With Quadratic Pressure Approximation
,”
Int. J. Numer. Methods Fluids
,
92
(
8
), pp.
803
824
.
40.
Zijlema
,
M.
,
2020
, “
Computation of Free Surface Waves in Coastal Waters With Swash on Unstructured Grids
,”
Comput. Fluids
,
213
, p.
104751
.
41.
Jeschke
,
A.
,
Pedersen
,
G. K.
,
Vater
,
S.
, and
Behrens
,
J.
,
2017
, “
Depth-Averaged Non-hydrostatic Extension for Shallow Water Equations With Quadratic Vertical Pressure Profile: Equivalence to Boussinesq-Type Equations
,”
Int. J. Numer. Methods Fluids
,
84
(
10
), pp.
569
583
.
42.
Bihs
,
H.
,
Kamath
,
A.
,
Alagan Chella
,
M.
,
Aggarwal
,
A.
, and
Arntsen
,
Ø. A.
,
2016
, “
A New Level Set Numerical Wave Tank With Improved Density Interpolation for Complex Wave Hydrodynamics
,”
Comput. Fluids
,
140
, pp.
191
208
.
43.
Thomson
,
W.
,
1887
, “
On Ship Waves
,”
Proc. Inst. Mech. Eng.
,
38
(
1
), pp.
409
434
.
You do not currently have access to this content.