Abstract

Remotely operated vehicle (ROV)-based inspection, maintenance, and repairs (IMR) services are costly because operations are traditionally executed by a hired subsea contractor, who then hires a specialized vessel with an entire crew from the vessel owner or the shipping company. Even though this is an established method considered relatively reliable in comparison to human divers, there is a growing need for more versatile, efficient, and economical IMR methods. Innovations that require no or less use of support vessels are mitigating this challenge. The current ROV classifications do not adapt to these innovations. Hence, the lack of a widely accepted ROV classification. Thus, this paper reviews ROV classifications and proposes a classification that poses no hindrance to innovation and conforms to modern developments. The paper then illustrates and reviews the emerging methods of conducting IMR operations by putting together in a concise, yet resourceful manner the ROV technologies and their various configurations to provide a basic meaningful understanding to the audience. This paper also provides a summary of the comparison of the methods and some of their challenges.

References

1.
Schjølberg
,
I.
,
Gjersvik
,
T. B.
,
Transeth
,
A. A.
, and
Utne
,
I. B.
,
2016
, “
Next Generation Subsea Inspection, Maintenance and Repair Operations
,”
IFAC-PapersOnLine
,
49
(
23
), pp.
434
439
.
2.
Tokic
,
D.
,
2015
, “
The 2014 Oil Bust: Causes and Consequences
,”
Energy Pol.
,
85
(
10
), pp.
162
169
.
3.
Herrera
,
A. M.
,
Karaki
,
M. B.
, and
Rangaraju
,
S. K.
,
2017
, “
Where Do Jobs Go When Oil Prices Drop?
Energy Econ.
,
64
(
4
), pp.
469
482
.
4.
Christ
,
R. D.
, and
Wernli, Sr
,
R. L.
,
2013
,
The ROV Manual: A User Guide for Remotely Operated Vehicles
,
Butterworth-Heinemann
,
Oxford
.
5.
Campagnaro
,
F.
,
Signori
,
A.
, and
Zorzi
,
M.
,
2020
, “
Wireless Remote Control for Underwater Vehicles
,”
J. Mar. Sci. Eng.
,
8
(
10
), p.
736
.
6.
Tzafestas
,
S.
,
2012
,
Intelligent Systems, Control and Automation: Science and Engineering
,
Springer Science+Business Media Dordrecht
,
Berlin
, pp.
161
162
.
7.
Zadeh
,
S. M.
,
Powers
,
D. M.
, and
Zadeh
,
R. B.
,
2020
,
Autonomy and Unmanned Vehicles Augmented Reactive Mission and Motion Planning Architecture
,
Springer Nature Singapore Pte Ltd
,
Singapore
.
8.
Veres
,
S. M.
,
Molnar
,
L.
,
Lincoln
,
N. K.
, and
Morice
,
C. P.
,
2011
, “
Autonomous Vehicle Control Systems—A Review of Decision Making
,”
Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng.
,
225
(
2
), pp.
155
195
.
9.
Sheridan
,
T. B.
, and
Verplank
,
W. L.
,
1978
, “
Human and Computer Control of Undersea Teleoperators
,” Technical Report,
Massachusetts Institute of Tech Cambridge Man-Machine Systems Lab
.
10.
Yazdani
,
A. M.
,
Sammut
,
K.
,
Yakimenko
,
O. A.
,
Lammas
,
A.
,
Tang
,
Y.
, and
Zadeh
,
S. M.
,
2017
, “
IDVD—Based Trajectory Generator for Autonomous Underwater Docking Operations
,”
Rob. Auton. Syst.
,
92
(
6
), pp.
12
29
.
11.
Grasso
,
T.
,
Bruni
,
F.
,
Filippini
,
M.
,
Gasparoni
,
F.
,
Maddalena
,
D.
,
Miozza
,
L.
,
Cioffi
,
P.
, et al
,
2016
, “
Clean Sea Hybrid ROV/AUV for Asset Integrity Operations
,”
The 26th International Ocean and Polar Engineering Conference
,
Rhodes, Greece
.
12.
Grenon
,
G.
,
Fidani
,
A.
, and
Tsouza
,
C.
,
2006
, “
Feasibility Study: Swimmer, a Hybrid AUV/ROV for Intervention on Subsea Production Systems
,”
Subsea Controls and Data Acquisition 2006: Controlling the Future Subsea
,
Neptune, France
, OnePetro.
13.
Whitfield
,
S.
,
2017
, “
The Industry of the Future: What Does It Look Like?
,”
J. Pet. Technol.
,
69
(
12
), pp.
43
46
.
14.
Yuh
,
J.
,
Marani
,
G.
, and
Blidberg
,
D. R.
,
2011
, “
Applications of Marine Robotic Vehicles
,”
Intell. Serv. Rob.
,
4
(
4
), pp.
221
231
.
15.
Di Lillo
,
P. A.
,
Simetti
,
E.
,
De Palma
,
D.
,
Cataldi
,
E.
,
Indiveri
,
G.
,
Antonelli
,
G.
, and
Casalino
,
G.
,
2016
, “
Advanced ROV Autonomy for Efficient Remote Control in the DexROV Project
,”
Mar. Technol. Soc. J.
,
50
(
4
), pp.
67
80
.
16.
Vincent
,
J. H.
,
Sevinc
,
N. D.
, and
Herbst
,
N. A.
,
2019
, “
uROV—The Next Generation IMR Platform Utilizing Supervised Autonomy
,”
Offshore Technology Conference
,
Houston, TX
, OnePetro.
17.
Johansson
,
B.
,
Siesjö
,
J.
, and
Furuholmen
,
M.
,
2011
, “
Seaeye Sabertooth, a Hybrid AUV/ROV Offshore System
,”
SPE Offshore Europe Oil and Gas Conference and Exhibition
,
Aberdeen, UK
, OnePetro.
18.
Newell
,
T.
, and
Gayathry
,
H.
,
2020
, “
An Autonomous Underwater Vehicle with Remote Piloting Using 4G Technology
,”
Offshore Technology Conference Asia
,
Kuala Lumpur, Malaysia
, OnePetro.
19.
Jakus
,
B.
, and
Olejnik
,
A.
,
2017
, “
The Analysis of Drive Systems in Unmanned Underwater Vehicles Towards Identifying the Method of Drive Transmission
,”
Pol. Hyperb. Res.
,
60
(
3
), pp.
1
6
.
20.
Capocci
,
R.
,
Dooly
,
G.
,
Omerdić
,
E.
,
Coleman
,
J.
,
Newe
,
T.
, and
Toal
,
D.
,
2017
, “
Inspection-Class Remotely Operated Vehicles—A Review
,”
J. Mar. Sci. Eng.
,
5
(
1
), p.
13
.
21.
El-Sayed
,
A. F.
,
2016
,
Fundamentals of Aircraft and Rocket Propulsion
,
Springer
,
London
, pp.
1
89
.
22.
Clothier
,
R.
,
Williams
,
B.
, and
Perez
,
T.
,
2014
, “
A Review of the Concept of Autonomy in the Context of the Safety Regulation of Civil Unmanned Aircraft Systems
,”
Proceedings of the Australian System Safety Conference 2013 (ASSC 2013) [Conferences in Research and Practice in Information Technology (CRPIT)]
,
Australia
,
2013
, Australian Computer Society Inc., pp.
15
27
.
23.
Omerdic
,
E.
,
Toal
,
D.
,
Nolan
,
S.
, and
Ahmad
,
H.
,
2012
,
Further Advances in Unmanned Marine Vehicles (IEE Control Eng. Series–Vol. 77)
,
The Institution of Engineering and Technology
,
London, UK
, pp.
9
44
.
24.
Blue Robotics
,
2016
, “
Technical Details
,” https://bluerobotics.com/store/rov/bluerov2-accessories/brov-payload-skid/, Accessed June 26, 2020.
25.
Abyss eyes
,
2021
, “
TMI-Orion S-ROV Remotely Operated Vehicle
,” http://abyss-eyes.fr/wp-content/uploads/2019/06/TMI-Orion-DS-S-ROV-EN-ed1.pdf, Accessed June 26, 2020.
26.
Karimi
,
M.
,
Bozorg
,
M.
, and
Khayatian
,
A.
,
2013
, “
Localization of an Autonomous Underwater Vehicle Using a Decentralized Fusion Architecture
,”
2013 9th Asian Control Conference (ASCC)
,
Istanbul, Turkey
,
June 23–26
, IEEE, pp.
1
5
.
27.
Wang
,
X.
, and
Wu
,
G.
,
2020
, “
Modified LOS Path Following Strategy of a Portable Modular AUV Based on Lateral Movement
,”
J. Mar. Sci. Eng.
,
8
(
9
), p.
683
.
28.
Ramos
,
M. A.
,
Thieme
,
C. A.
, and
Yang
,
X.
, “
Human-System Concurrent Task Analysis: An Application to Autonomous Remotely Operated Vehicle Operations
,”
e-proceedings of the 30th European Safety and Reliability Conference and 15th Probabilistic Safety Assessment and Management Conference (ESREL2020 PSAM15)
,
Venice, Italy
,
Nov. 1–5
.
29.
Hegde
,
J.
,
Henriksen
,
E. H.
,
Utne
,
I. B.
, and
Schjølberg
,
I.
,
2019
, “
Development of Safety Envelopes and Subsea Traffic Rules for Autonomous Remotely Operated Vehicles
,”
J. Loss Prev. Process Ind.
,
60
(
4
), pp.
145
158
.
30.
Cyberneticzoo
,
2015
, “
1985—‘Aquarobot’ Aquatic Walking Robot—(Japanese)
,” http://cyberneticzoo.com/underwater-robotics/1985-aquarobot-aquatic-walking-robot-japanese/, Accessed December 8, 2021.
31.
Li
,
Y.
,
Zhang
,
H.
,
Wang
,
H.
,
Li
,
J.
,
Zhai
,
X.
, and
Xu
,
J.
,
2019
, “
Design of a Variable Buoyancy System for the Hybrid Crawler-Flyer Underwater Vehicle
,”
2019 Chinese Automation Congress (CAC)
,
Hangzhou, China
, IEEE, pp.
5335
5339
.
32.
Picardi
,
G.
,
Chellapurath
,
M.
,
Iacoponi
,
S.
,
Stefanni
,
S.
,
Laschi
,
C.
, and
Calisti
,
M.
,
2020
, “
Bioinspired Underwater Legged Robot for Seabed Exploration With Low Environmental Disturbance
,”
Sci. Rob.
,
5
(
42
), pp.
1
14
.
33.
Manley
,
J. E.
,
Halpin
,
S.
,
Radford
,
N.
, and
Ondler
,
M.
,
2018
, “
Aquanaut: A New Tool for Subsea Inspection and Intervention
,”
OCEANS 2018 MTS/IEEE Charleston
,
Charleston, SC
,
Oct. 22–25
, IEEE, pp.
1
4
.
34.
Topini
,
E.
,
Pagliai
,
M.
, and
Allotta
,
B.
,
2021
, “
Dynamic Maneuverability Analysis: A Preliminary Application on an Autonomous Underwater Reconfigurable Vehicle
,”
Appl. Sci.
,
11
(
10
), p.
4469
.
35.
Kwak
,
B.
, and
Bae
,
J.
,
2018
, “
Locomotion of Arthropods in Aquatic Environment and Their Applications in Robotics
,”
Bioinspir. Biomim.
,
13
(
4
), p.
041002
.
36.
Primeau
,
E.
,
2019
, “
Innovations in Inspection Processes for Marine Pipelines
,”
SPE Offshore Europe Conference and Exhibition
,
Aberdeen, UK
, OnePetro.
37.
Johannessen
,
I. A.
, and
Jonassen
,
J. R.
,
2018
,
“A Subsea Operation in Action: A Brief Overview of How IMR Subsea Operations are Organized and Executed,” Report in the collection: Institutt for økonomi og administrasjon
.
38.
Britton
,
J.
, and
Taylor
,
M. L.
,
2017
,
Trends in Oil and Gas Corrosion Research and Technologies
,
Woodhead Publishing
, pp.
593
612
.
39.
Teague
,
J.
,
Allen
,
M. J.
, and
Scott
,
T. B.
,
2018
, “
The Potential of Low-Cost ROV for Use in Deep-Sea Mineral, Ore Prospecting and Monitoring
,”
Ocean Eng.
,
147
(
1
), pp.
333
339
.
40.
Wright
,
M.
,
Gorma
,
W.
,
Luo
,
Y.
,
Post
,
M.
,
Xiao
,
Q.
, and
Durrant
,
A.
,
2020
, “
Multi-Actuated AUV Body for Windfarm Inspection: Lessons From the Bio-Inspired Robofish Field Trials
,”
2020 IEEE/OES Autonomous Underwater Vehicles Symposium (AUV) (50043)
,
St. Johns, NL, Canada
,
Sept. 30–Oct. 2
, IEEE, pp.
1
6
.
41.
Grøtli
,
E. I.
,
Bjerkeng
,
M. C.
,
Rundtop
,
P.
,
Vagia
,
M.
,
Bakkevig
,
F.
, and
Transeth
,
A. A.
,
2017
, “
Canvas as a Design Tool for Autonomous Operations: With Application to Net Inspection of a Sea Based Fish Farm Using an Underwater Vehicle
,”
OCEANS 2017
,
Aberdeen, UK
,
June 19–22
.
42.
Kaiser
,
M. J.
, and
Snyder
,
B. F.
,
2012
,
Offshore Wind Energy Cost Modeling
,
Springer-Verlag
,
London
, pp.
69
89
.
43.
Jacob
,
A. A.
,
Galipalli
,
M.
,
Upadhyay
,
V.
,
Rajagopal
,
P.
, and
Balasubramaniam
,
K.
, “
Underwater Inspection in Lieu of Dry-Docking (Uwild) Using Remotely Operated Vehicles (ROV)
,”
NDE 2018 Conference & Exhibition of the Indian Society for NDT (ISNT)
,
Mumbai, India
,
Dec. 19–21
.
44.
Group
,
E.
,
2021
, “
H2000/ROV/remotely operated vehicle
,” https://www.ecagroup.com/en/solutions/h2000-rov-remotely-operated-vehicle, Accessed February 8, 2021.
45.
Molland
,
A. F.
,
2008
,
Chapter 10—Underwater Vehicles
,
Butterworth-Heinemann
,
Oxford
.
46.
Johannessen
,
I. A.
,
McArthur
,
P. W.
, and
Jonassen
,
J. R.
,
2015
, “
Informal Leadership Redundancy: Balancing Structure and Flexibility in Subsea Operations
,”
Scand. J. Manage.
,
31
(
3
), pp.
409
423
.
47.
Johannessen
,
I. A.
,
McArthur
,
P. W.
, and
Jonassen
,
J. R.
,
2011
, “
Leadership Redundancy in a Multiteam System
,” International Conference on Advances in Production Management Systems (APMS),
J.
Frick
and
B. T.
Laugen
, eds., Vol. AICT-384 of Advances in Production Management Systems. Value Networks: Innovation, Technologies, and Management,
Stavanger, Norway
,
Sept. 26–28
.
48.
England
,
R.
,
1978
, “
The Underwater Contractor: His Role and Development
,”
Philos. Trans. R. Soc. Lond. Ser. A
,
290
(
1366
), pp.
153
159
.
49.
Newell
,
T.
,
2018
, “
Technical Building Blocks for a Resident Subsea Vehicle
,”
Offshore Technology Conference
,
Houston, TX
.
50.
Vagale
,
A.
,
Oucheikh
,
R.
,
Bye
,
R. T.
,
Osen
,
O. L.
, and
Fossen
,
T. I.
,
2021
, “
Path Planning and Collision Avoidance for Autonomous Surface Vehicles: A Review
,”
J. Mar. Sci. Technol.
,
26
(
4
), pp.
1
15
.
51.
Felski
,
A.
, and
Zwolak
,
K.
,
2020
, “
The Ocean-Going Autonomous Ship—Challenges and Threats
,”
J. Mar. Sci. Technol.
,
8
(
1
), p.
41
.
52.
Fahrni
,
L.
,
Thies
,
P.
,
Johanning
,
L.
, and
Cowles
,
J.
,
2018
, “
Scope and Feasibility of Autonomous Robotic Subsea Intervention Systems for Offshore Inspection, Maintenance and Repair
,”
Advances in Renewable Energies Offshore Proceedings of the 3rd International Conference on Renewable Energies Offshore
,
Lisbon, Portugal
,
Oct. 3
, pp.
771
778
.
53.
Anderson
,
B. S.
,
2018
, “
Cost Reduction in E&P, IMR, and Survey Operations Using Unmanned Surface Vehicles
,”
Offshore Technology Conference
,
Houston, TX
, OnePetro.
54.
Stevens
,
M. A.
,
2019
, “
Resident Vehicles: A New Directive for Subsea Operations
,”
Mar. Technol. Soc. J.
,
53
(
5
), pp.
54
58
.
55.
Trslić
,
P.
,
Rossi
,
M.
,
Sivčev
,
S.
,
Dooly
,
G.
,
Coleman
,
J.
,
Omerdić
,
E.
, and
Toal
,
D.
,
2018
, “
Long Term, Inspection Class ROV Deployment Approach for Remote Monitoring and Inspection
,”
OCEANS 2018 MTS/IEEE Charleston
,
Charleston, SC
,
Oct. 22–25
, IEEE, pp.
1
6
.
56.
Liljebäck
,
P.
, and
Mills
,
R.
,
2017
, “
Eelume: A Flexible and Subsea Resident IMR Vehicle
,”
Oceans 2017-Aberdeen
,
Aberdeen, UK
,
June 19–22
, IEEE, pp.
1
4
.
57.
Sverdrup-Thygeson
,
J.
,
Kelasidi
,
E.
,
Pettersen
,
K. Y.
, and
Gravdahl
,
J. T.
,
2017
, “
The Underwater Swimming Manipulator—A Bioinspired Solution for Subsea Operations
,”
IEEE J. Ocean. Eng.
,
43
(
2
), pp.
402
417
.
58.
Hegde
,
J.
,
Utne
,
I. B.
,
Schjølberg
,
I.
, and
Thorkildsen
,
B.
,
2015
, “
Application of fuzzy logic for safe autonomous subsea IMR operations
,”
25th European Safety and Reliability Conference – ESREL 2015
,
ETH Zurich, Switzerland
,
September
.
59.
Tang
,
J.
,
Lyu
,
Y.
,
Shen
,
Y.
,
Zhang
,
M.
, and
Su
,
M.
,
2017
, “
Numerical Study on Influences of Breakwater Layout on Coastal Waves, Wave-Induced Currents, Sediment Transport and Beach Morphological Evolution
,”
Ocean Eng.
,
141
(
13
), pp.
375
387
.
60.
Lane
,
D. M.
,
Maurelli
,
F.
,
Larkworthy
,
T.
,
Caldwell
,
D.
,
Salvi
,
J.
,
Fox
,
M.
, and
Kyriakopoulos
,
K.
,
2012
, “
Pandora: Persistent Autonomy Through Learning, Adaptation, Observation and Re-Planning
,”
IFAC-PapersOnLine
,
45
(
5
), pp.
367
372
.
61.
Lane
,
D. M.
,
Maurelli
,
F.
,
Kormushev
,
P.
,
Carreras
,
M.
,
Fox
,
M.
, and
Kyriakopoulos
,
K.
,
2015
, “
Pandora-Persistent Autonomy Through Learning, Adaptation, Observation and Replanning
,”
IFAC-PapersOnLine
,
48
(
2
), pp.
238
243
.
62.
Hansen
,
K.
, and
Bender
,
L.
,
1996
, “
Coast Guard ROV Experience
,”
OCEANS 96 MTS/IEEE Conference Proceedings. The Coastal Ocean-Prospects for the 21st Century
,
Fort Lauderdale, FL
,
Sept. 23–26
, Vol.
1
, IEEE, pp.
253
256
.
63.
Butcher
,
P. A.
,
Colefax
,
A. P.
,
Gorkin
,
R. A.
,
Kajiura
,
S. M.
,
López
,
N. A.
,
Mourier
,
J.
,
Purcell
,
C. R.
, et al
,
2021
, “
The Drone Revolution of Shark Science: A Review
,”
Drones
,
5
(
1
), p.
8
.
64.
de Lima
,
R. L. P.
,
Paxinou
,
K.
,
Boogaard
,
F. C.
,
Akkerman
,
O.
, and
Lin
,
F.-Y.
,
2021
, “
In-Situ Water Quality Observations Under a Large-Scale Floating Solar Farm Using Sensors and Underwater Drones
,”
Sustainability
,
13
(
11
), p.
6421
.
65.
Wright
,
N.
,
2017
, “
Seadrone a Low Cost Dual Drone/ROV Technology That Can Cross the Sea Boundary
,”
OCEANS 2017-Anchorage
,
Anchorage, AK
,
Sept. 18–21
, IEEE, pp.
1
4
.
66.
Wright
,
N.
, and
Chan
,
H. K.
,
2019
, “
Drone Craft for Dual Flight and Subsea Operations: Polar Adaption and Trials
,”
OCEANS 2019 MTS/IEEE SEATTLE
,
Seattle, WA
,
Oct. 27–31
, IEEE, pp.
1
4
.
You do not currently have access to this content.